Porous CoFe O /C NRAs supported on nickel foam@NC (denoted as NF@NC-CoFe O /C NRAs) are directly fabricated by the carbonization of bimetal-organic framework NRAs grown on NF@poly-aniline(PANI), and they exhibit high electrocatalytic activity, low overpotential, and high stability for the oxygen evolution reaction in alkaline media.
Postsynthetic ion exchange of [Co2(μ-Cl)2(btta)] (MAF-X27-Cl, H2bbta =1H,5H-benzo(1,2-d:4,5-d')bistriazole) possessing open metal sites on its pore surface yields a material [Co2(μ-OH)2(bbta)] (MAF-X27-OH) functionalized by both open metal sites and hydroxide ligands, giving drastically improved electrocatalytic activities for the oxygen evolution reaction (an overpotential of 292 mV at 10.0 mA cm(-2) in 1.0 M KOH solution). Isotope tracing experiments further confirm that the hydroxide ligands are involved in the OER process to provide a low-energy intraframework coupling pathway.
The paddle-wheel type cluster Co(RCOO)(L) (R = substituent group, L = terminal ligand), possessing unusual metal coordination geometry compared with other cobalt compounds, may display high catalytic activity but is highly unstable especially in water. Here, we show that with judicious considerations of the host/guest geometries and modular synthetic strategies, the labile dicobalt clusters can be immobilized and stabilized in a metal-organic framework (MOF) as coordinative guests. The Fe(na)(L) fragment in the MOF [{Fe(μ-O)(bdc)}{Fe(na)(L)}] (Hbdc = 1,4-benzenedicaboxylic acid, Hna = nicotinic acid) can be removed to give [{Fe(μ-O)(bdc)}] with a unique framework connectivity possessing suitable distribution of open metal sites for binding the dicobalt cluster in the form of Co(na)(L). After two-step, single-crystal to single-crystal, postsynthetic modifications, a thermal-, water-, and alkaline-stable MOF [{Fe(μ-O)(bdc)}{Co(na)(L)}] containing the desired dicobalt cluster was obtained, giving extraordinarily high electrocatalytic oxygen evolution activity in water at pH = 13 with overpotential as low as 225 mV at 10.0 mA cm.
Human JAK2 tyrosine kinase mediates signaling through numerous cytokine receptors. The JAK2 JH2 domain functions as a negative regulator and is presumed to be a catalytically inactive pseudokinase, but the mechanism(s) for its inhibition of JAK2 remains unknown. Mutations in JH2 lead to increased JAK2 activity contributing to myeloproliferative neoplasms (MPNs). Here, we show that JH2 is a dual-specificity protein kinase that phosphorylates two negative regulatory sites in JAK2, Ser523 and Tyr570. Inactivation of JH2 catalytic activity increased JAK2 basal activity and downstream signaling. Importantly, different MPN mutations were found to abrogate JH2 activity in cells, and in MPN (V617F) patient cells, phosphorylation of Tyr570 was reduced, suggesting that loss of JH2 activity contributes to the pathogenesis of MPNs. These results identify the catalytic activity of JH2 as a previously unrecognized mechanism to control basal activity and signaling of JAK2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.