This article describes the effects of changing monomer and cross-linker concentrations on the mass gain, water permeability, Pd-Fe nanoparticle (NP) loading, and the rate of degradation of 3,3',4,4',5-pentachlorobiphenyl (PCB 126) of pore functionalized polyvinylidene fluoride (PVDF) membranes. In this study, monomer (acrylic acid (AA)) and cross-linker (N, N′-methylene-bis (acrylamide)) concentrations were varied from 10 to 20 wt% of polymer solution and 0.5-2 mol% of monomer concentration, respectively. Results showed that responsive behavior of membrane could be tuned in terms of water permeability over a range of 270-1 L m −2 h −1 bar −1 , which is a function of water pH. The NP size on the membrane surface was found in the range of 16-23 nm. With increasing cross-linker density the percentage of smaller NPs (< 10 nm) increases due to smaller mesh size formation during in-situ polymerization of membrane. NP loading was found to vary from 0.21 to 0.94 mg per cm 2 of membrane area depending on the variation of available carboxyl groups in membrane pore domain. The NPs functionalized membranes were then tested for use as a platform for the degradation of PCB 126. The observed batch reaction rate (K obs) for PCB 126 degradation for per mg of catalyst loading was found 0.08-0.1 h −1. Degradation study in convective flow mode shows 98.6% PCB 126 is degraded at a residence time of 46.2 s. The corresponding surface area normalized reaction rate (K sa) is found about two times higher than K sa of batch degradation; suggesting elimination of the effect of diffusion resistance for degradation of PCB 126 in convective flow mode operation. These Pd-Fe-PAA-PVDF membranes and nanoparticles are characterized by TGA, contact angle measurement, surface zeta potential, XRD, SEM, XPS, FIB, TEM and other techniques reveal the details about the membrane surface, pores and nanoparticles size, shape and size-distribution. Statistical analysis based on experimental *
Functionalized PVDF membrane platforms were developed for environmentally benign in-situ nanostructured Fe/Pd synthesis and remediation of chlorinated organic compounds. To prevent leaching and aggregation, nanoparticle catalysts were integrated into membrane domains functionalized with poly (acrylic acid). Nanoparticles of 16–19 nm were observed inside the membrane pores by using focused ion beam (FIB). This technique prevents mechanical deformation of the membrane, compared to the normal SEM preparation methods, thus providing a clean, smooth surface for nanoparticles characterization. This allowed quantification of nanoparticle properties (size and distribution) versus depth underneath the membrane surface (0–20 µm). The results showed that nanoparticles were uniformly sized and evenly distributed inside the membrane pores. However, the size of nanoparticles inside the membrane pores was 13.9% smaller than those nanoparticles located on the membrane surface. Investigating nanoparticles inside membrane pores increases the accuracy of kinetic analysis and modeling aspects. Furthermore, the Fe/Pd immobilized membranes showed excellent performance in the degradation of chlorinated organics: Over 96% degradation of 3,3',4,4',5-pentachlorobiphenyl (PCB 126) was achieved in less than 15 s residence time in convective flow mode. The regeneration and reuse of this catalytic membrane system were also studied. Particles were examined in XRD upon formation, after deliberate oxidation, and after regeneration. The regenerated sample showed the same crystalline pattern as the original sample. Repeated degradation experiments demonstrated successful PCB 126 dechlorination with nanoparticles regenerated for four cycles with only a small loss in reactivity. It demonstrated that Fe/Pd immobilized membranes have the potential for large-scale remediation applications.
The poly(methacrylic acid) (PMAA) was synthesized in the pores of commercial microfiltration PVDF membranes to allow incorporation of catalytic palladium/iron (Pd/Fe) nanoparticles for groundwater remediation. Particles of 17.1 ± 4.9 nm size were observed throughout the pores of membranes using a focused ion beam. To understand the role of Pd fractions and particle compositions, 2-chlorobiphenyl was used as a model compound in solution phase studies. Results show H 2 production (Fe 0 corrosion in water) is a function of Pd coverage on the Fe. Insufficient H 2 production caused by higher coverage (> 10.4% for 5.5 wt%) hindered dechlorination rate. With 0.5 wt% Pd, palladized-Fe reaction rate (surface area normalized reaction rate, k sa = 0.12 L/(m 2-h) was considerably higher than isolated Pd and Fe particles. For groundwater, in a single pass of Pd/Fe-PMAA-PVDF membranes (0.5 wt% Pd), chlorinated organics, such as trichloroethylene (177 ppb) and carbon tetrachloride (35 ppb), were degraded to 16 and 0.3 ppb, respectively, at 2.2 seconds of residence time. The degradation rate (observed k sa) followed the order of carbon tetrachloride > trichloroethylene > tetrachloroethylene > chloroform. A 36 h continuous flow study with organic mixture and the regeneration process show the potential for on-site remediation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.