To develop an ultrafast and robust MR parameter mapping network using deep learning. Theory and Methods:We design a deep learning framework called SuperMAP that directly converts a series of undersampled (both in k-space and parameter-space) parameter-weighted images into several quantitative maps, bypassing the conventional exponential fitting procedure. We also present a novel technique to simultaneously reconstruct T1rho and T2 relaxation maps within a single scan. Full data were acquired and retrospectively undersampled for training and testing using traditional and state-of-the-art techniques for comparison. Prospective data were also collected to evaluate the trained network.The performance of all methods is evaluated using the parameter qualification errors and other metrics in the segmented regions of interest. Results: SuperMAP achieved accurate T1rho and T2 mapping with high acceleration factors (R = 24 and R = 32). It exploited both spatial and temporal information and yielded low error (normalized mean square error of 2.7% at R = 24 and 2.8% at R = 32) and high resemblance (structural similarity of 97% at R = 24 and 96% at R = 32) to the gold standard. The network trained with retrospectively undersampled data also works well for the prospective data (with a slightly lower acceleration factor). SuperMAP is also superior to conventional methods. Conclusion:Our results demonstrate the feasibility of generating superfast MR parameter maps through very few undersampled parameter-weighted images. SuperMAP can simultaneously generate T1rho and T2 relaxation maps in a short scan time.
In this abstract, we propose a novel reconstruction method, named DURED-Net, that enables interpretable unsupervised learning for MR image reconstruction by combining an unsupervised denoising network and a plug-and-play method. Specifically, we incorporate the physics model into the denoising network using Regularization by Denoising (RED), and unroll the underlying optimization into a deep neural network. In addition, a sampling pattern was specially designed to facilitate unsupervised learning. Experiment results based on the knee fastMRI dataset exhibit marked improvements over the existing unsupervised reconstruction methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.