The purpose of this proof-of-concept study was to develop three-dimensional patient-specific mechanobiological knee joint models to simulate alterations in the fixed charged density (FCD) around cartilage lesions during the stance phase of the walking gait. Two patients with anterior cruciate ligament (ACL) reconstructed knees were imaged at 1 and 3 years after surgery. The magnetic resonance imaging (MRI) data were used for segmenting the knee geometries, including the cartilage lesions. Based on these geometries, finite element (FE) models were developed. The gait of the patients was obtained using a motion capture system. Musculoskeletal modeling was utilized to calculate knee joint contact and lower extremity muscle forces for the FE models. Finally, a cartilage adaptation algorithm was implemented in both FE models. In the algorithm, it was assumed that excessive maximum shear and deviatoric strains (calculated as the combination of principal strains), and fluid velocity, are responsible for the FCD loss. Changes in the longitudinal T 1ρ and T 2 relaxation times were postulated to be related to changes in the cartilage composition and were compared with the numerical predictions. In patient 1 model, both the excessive fluid velocity and strain caused the FCD loss primarily near the cartilage lesion. T 1ρ and T 2 relaxation times increased during the follow-up in the same location. In contrast, in patient 2 model, only the excessive fluid velocity led to a slight FCD loss near the lesion, where MRI parameters did not show evidence of alterations. Significance: This novel proof-of-concept study suggests mechanisms through which a local FCD loss might occur near cartilage lesions. In order to obtain statistical evidence for these findings, the method should be investigated with a larger cohort of subjects.
Purpose Fully automatic tissue segmentation is an essential step to translate quantitative MRI techniques to clinical setting. The goal of this study was to develop a novel approach based on the generative adversarial networks for fully automatic segmentation of knee cartilage and meniscus. Theory and Methods Defining proper loss function for semantic segmentation to enforce the learning of multiscale spatial constraints in an end‐to‐end training process is an open problem. In this work, we have used the conditional generative adversarial networks to improve segmentation performance of convolutional neural network, such as UNet alone by overcoming the problems caused by pixel‐wise mapping based objective functions, and to capture cartilage features during the training of the network. Furthermore, the Dice coefficient and cross entropy losses were incorporated to the loss functions to improve the model performance. The model was trained and tested on 176, 3D DESS (double‐echo steady‐state) knee images from the Osteoarthritis Initiative data set. Results The proposed model provided excellent segmentation performance for cartilages with Dice coefficients ranging from 0.84 in patellar cartilage to 0.91 in lateral tibial cartilage, with an average Dice coefficient of 0.88. For meniscus segmentation, the model achieves 0.89 Dice coefficient for lateral meniscus and 0.87 Dice coefficient for medial meniscus. The results are superior to previously published automatic cartilage and meniscus segmentation methods based on deep learning models such as convolutional neural network. Conclusion The proposed UNet‐conditional generative adversarial networks based model demonstrated a fully automated segmentation method with high accuracy for knee cartilage and meniscus.
Activity recognition is an important component of many pervasive computing applications. Device-free activity recognition has the advantage that it does not have the privacy concern of using cameras and the subjects do not have to carry a device on them. Recently, it has been shown that channel state information (CSI) can be used for activity recognition in a device-free setting. With the proliferation of wireless devices, it is important to understand how radio frequency interference (RFI) can impact on pervasive computing applications. In this paper, we investigate the impact of RFI on device-free CSI-based location-oriented activity recognition. We conduct experiments in environments without and with RFI. We present data to show that RFI can have a significant impact on the CSI vectors. In the absence of RFI, different activities give rise to different CSI vectors that can be differentiated visually. However, in the presence of RFI, the CSI vectors become much noisier and activity recognition also becomes harder. Our extensive experiments shows that the performance of state-of-the-art classification methods may degrade significantly with RFI. We then propose a number of counter measures to mitigate the impact of RFI and improve the location-oriented activity recognition performance. Our evaluation shows the proposed method can improve up to 10% true detection rate in the presence of RFI. We also study the impact of bandwidth on activity recognition performance. We show that with a channel bandwidth of 20 MHz (which is used by WiFi), it is possible to achieve a good activity recognition accuracy when RFI is present.
Purpose This work proposes new low rank approximation approaches with significant memory savings for large scale MR fingerprinting (MRF) problems. Theory and Methods We introduce a compressed MRF with randomized SVD method to significantly reduce the memory requirement for calculating a low rank approximation of large sized MRF dictionaries. We further relax this requirement by exploiting the structures of MRF dictionaries in the randomized SVD space and fitting them to low-degree polynomials to generate high resolution MRF parameter maps. In vivo 1.5 and 3 Tesla brain scan data are used to validate the approaches. Results T1, T2 and off-resonance maps are in good agreement with that of the standard MRF approach. Moreover, the memory savings is up to 1000 times for the MRF-FISP sequence and more than 15 times for the MRF-bSSFP sequence. Conclusion The proposed compressed MRF with randomized SVD and dictionary fitting methods are memory efficient low rank approximation methods, which can benefit the usage of MRF in clinical settings. They also have great potentials in large scale MRF problems, such as problems considering multi-component MRF parameters or high resolution in the parameter space.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.