This paper presents for the first time a successful synthesis of quaternary nanocomposites consisting of graphene, Fe(3)O(4)@Fe core/shell nanopariticles, and ZnO nanoparticles. Transmission electron microscopy measurements show that the diameter of the Fe(3)O(4)@Fe core/shell nanoparitcles is about 18 nm, the Fe(3)O(4) shell's thickness is about 5 nm, and the diameter of ZnO nanoparticles is in range of 2-10 nm. The measured electromagnetic parameters show that the absorption bandwidth with reflection loss less than -20 dB is up to 7.3 GHz, and in the band range more than 99% of electromagnetic wave energy is attenuated. Moreover, the addition amount of the nanocomposites in the matrix is only 20 wt %. Therefore, the excellent electromagnetic absorption properties with lightweight and wide absorption frequency band are realized by the nanocomposites.
Candida albicans
can switch from commensal to pathogenic mode, causing mucosal or disseminated candidiasis. The host relies on pattern-recognition receptors including Toll-like receptors (TLRs) and C-type lectin receptors (CLRs) to sense invading fungal pathogens and launch immune defense mechanisms. However, the complex interplay between fungus and host innate immunity remains incompletely understood. Here we report that
C
.
albicans
upregulates expression of a small secreted cysteine-rich protein Sel1 upon encountering limited nitrogen and abundant serum. Sel1 activates NF-κB and MAPK signaling pathways, leading to expression of proinflammatory cytokines and chemokines. Comprehensive genetic and biochemical analyses reveal both TLR2 and TLR4 are required for the recognition of Sel1. Further,
SEL1
-deficient
C
.
albicans
display an impaired immune response in vivo, causing increased morbidity and mortality in a bloodstream infection model. We identify a critical component in the Candida-host interaction that opens a new avenue to tackle Candida infection and inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.