Fe 3 O 4 /TiO 2 core/shell nanotubes are fabricated via a three-step process. R-Fe 2 O 3 nanotubes are first obtained, and R-Fe 2 O 3 /TiO 2 core/shell nanotubes are subsequently fabricated using Ti(SO 4 ) 2 as a Ti source by a wet chemical process. The thickness of the amorphous TiO 2 shell is about 21 nm. After a H 2 deoxidation process, the amorphous TiO 2 layer changes into crystalline structures composed of TiO 2 nanoparticles with an average diameter of 2.5 nm, and its thickness is decreased to about 18 nm. At the same time, R-Fe 2 O 3 transforms into cubic Fe 3 O 4 . Consequently, crystalline Fe 3 O 4 /TiO 2 core/shell nanotubes can be fabricated through the process above. The measurements of the magnetic properties demonstrate that the Fe 3 O 4 /TiO 2 core/shell nanotubes exhibit ferromagnetic behavior at room temperature, and the Verwey temperature is about 120 K. The eddy current effect is largely reduced and the anisotropy energy is improved significantly for the core/shell nanotubes due to the presence of the TiO 2 shells. The maximum reflection loss reaches -20.6 dB at 17.28 GHz for the absorber with thickness of 5 mm, and the absorption bandwidth with the reflection loss below -10 dB is up to 13.12 GHz for the absorber with a thickness of 2-5 mm. Our results demonstrate that the Fe 3 O 4 /TiO 2 core/shell nanotubes obtained in this work are attractive candidate materials for the magnetic and EM wave absorption applications.
The porous Fe 3 O 4 /carbon core/shell nanorods were fabricated via a three-step process. R-Fe 2 O 3 nanorods were first obtained, and R-Fe 2 O 3 /carbon core/shell nanorods were subsequently fabricated using glucose as a carbon source by a hydrothermal method, in which the thickness of the carbon coating was about 3.5 nm. Fe 3 O 4 /carbon core/shell nanorods were synthesized after an annealing treatment of the product above under a mixture of Ar/H 2 flow. After the H 2 deoxidation process, the Fe 3 O 4 core exhibited a character of porosity; the thickness of the carbon shell was decreased to about 2.5 nm, and its degree of graphitization was enhanced. The interesting core/ shell nanostructures are ferromagnetic at room temperature, and the Verwey temperature was about 120 K. Electromagnetic properties of the core/shell nanorodÀwax composite were investigated in detail. The maximum reflection loss was about À27.9 dB at 14.96 GHz for the composite with a thickness of 2.0 mm, and the absorption bandwidth with the reflection loss below À18 dB was up to 10.5 GHz for the absorber with the thickness of 2À5 mm. The excellent electromagnetic wave absorption properties of the porous Fe 3 O 4 /carbon core/shell nanorods were attributed to effective complementarities between the dielectric loss and the magnetic loss.
In the paper, we find that graphene has a strong dielectric loss, but exhibits very weak attenuation properties to electromagnetic waves due to its high conductivity. As polyaniline nanorods are perpendicularly grown on the surface of graphene by an in situ polymerization process, the electromagnetic absorption properties of the nanocomposite are significantly enhanced. The maximum reflection loss reaches À45.1 dB with a thickness of the absorber of only 2.5 mm. Theoretical simulation in terms of the Cole-Cole dispersion law shows that the Debye relaxation processes in graphene/ polyaniline nanorod arrays are improved compared to polyaniline nanorods. The enhanced electromagnetic absorption properties are attributed to the unique structural characteristics and the charge transfer between graphene and polyaniline nanorods. Our results demonstrate that the deposition of other dielectric nanostructures on the surface of graphene sheets is an efficient way to fabricate lightweight materials for strong electromagnetic wave absorbents.
Extraordinarily high reversible capacity of lithium-ion battery anodes is realized from SnO(2)/α-MoO(3) core-shell nanobelts. The reversible capacity is much higher than traditional theoretical results. Such behavior is attributed to α-MoO(3) that makes extra Li(2)O reversibly convert to Li(+).
Porous Fe3O4/SnO2 core/shell nanorods are successfully fabricated, in which the width and the length of the pores are 5−10 and 10−60 nm, respectively. We prepared 80 wt % of porous Fe3O4/SnO2 core/shell nanorod-wax composites in order to measure their electromagnetic parameters. The measured results indicate that effective complementarities between the dielectric loss and the magnetic loss are realized over 2−18 GHz frequency range, suggesting the porous Fe3O4/SnO2 core/shell nanorods have excellent electromagnetic wave absorption properties. The reflection loss was calculated in terms of the transmit-line theory. The absorption range under −20 dB is from 3.2 to 16.88 GHz for an absorber thickness of 2−5 mm. Moreover, the porous core/shell nanorods exhibit dual-frequency absorption characteristics and their maximum reflection loss reaches −27.38 dB at 16.72 GHz as the absorber thickness is 4 mm. The excellent microwave absorption properties of the porous Fe3O4/SnO2 core/shell nanorods are attributed to effective complementarities between the dielectric loss and the magnetic loss and the special core−shell structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.