A novel coronavirus recently emerged as an acute respiratory syndrome, and has caused a pneumonia outbreak world-widely. As the COVID-19 continues to spread rapidly across the world, computed tomography (CT) has become essentially important for fast diagnoses. Thus, it is urgent to develop an accurate computer-aided method to assist clinicians to identify COVID-19-infected patients by CT images. Here, we have collected chest CT scans of 88 patients diagnosed with COVID-19 from hospitals of two provinces in China, 100 patients infected with bacteria pneumonia, and 86 healthy persons for comparison and modeling. Based on the data, a deep learning-based CT diagnosis system was developed to identify patients with COVID-19. The experimental results showed that our model could accurately discriminate the COVID-19 patients from the bacteria pneumonia patients with an AUC of 0.95, recall (sensitivity) of 0.96, and precision of 0.79. When integrating three types of CT images, our model achieved a recall of 0.93 with precision of 0.86 for discriminating COVID-19 patients from others. Moreover, our model could extract main lesion features, especially the ground-glass opacity (GGO), which are visually helpful for assisted diagnoses by doctors. An online server is available for online diagnoses with CT images by our server (http://biomed.nscc-gz.cn). Source codes and datasets are available at our GitHub.
Background A novel coronavirus (COVID-19) has emerged recently as an acute respiratory syndrome. The outbreak was originally reported in Wuhan, China, but has subsequently been spread world-widely. As the COVID-19 continues to spread rapidly across the world, computed tomography (CT) has become essentially important for fast diagnoses. Thus, it is urgent to develop an accurate computer-aided method to assist clinicians to identify COVID-19-infected patients by CT images. Materials and Methods We collected chest CT scans of 88 patients diagnosed with the COVID-19 from hospitals of two provinces in China, 101 patients infected with bacteria pneumonia, and 86 healthy persons for comparison and modeling. Based on the collected dataset, a deep learning-based CT diagnosis system (DeepPneumonia) was developed to identify patients with COVID-19. Results The experimental results showed that our model can accurately identify the COVID-19 patients from others with an excellent AUC of 0.99 and recall (sensitivity) of 0.93. In addition, our model was capable of discriminating the COVID-19 infected patients and bacteria pneumonia-infected patients with an AUC of 0.95, recall (sensitivity) of 0.96. Moreover, our model could localize the main lesion features, especially the ground-glass opacity (GGO) that is of great help to assist doctors in diagnosis. The diagnosis for a patient could be finished in 30 seconds, and the implementation on Tianhe-2 supercompueter enables a parallel executions of thousands of tasks simultaneously. An online server is available for online diagnoses with CT images by http://biomed.nscc-gz.cn/server/Ncov2019. Conclusions The established models can achieve a rapid and accurate identification of COVID-19 in human samples, thereby allowing identification of patients.
White matter hyperintensities (WMH) are commonly found in the brains of healthy elderly individuals and have been associated with various neurological and geriatric disorders. In this paper, we present a study using deep fully convolutional network and ensemble models to automatically detect such WMH using fluid attenuation inversion recovery (FLAIR) and T1 magnetic resonance (MR) scans. The algorithm was evaluated and ranked 1st in the WMH Segmentation Challenge at MICCAI 2017. In the evaluation stage, the implementation of the algorithm was submitted to the challenge organizers, who then independently tested it on a hidden set of 110 cases from 5 scanners. Averaged dice score, precision and robust Hausdorff distance obtained on held-out test datasets were 80%, 84% and 6.30 mm respectively. These were the highest achieved in the challenge, suggesting the proposed method is the state-of-the-art. Detailed descriptions and quantitative analysis on key components of the system were provided. Furthermore, a study of cross-scanner evaluation is presented to discuss how the combination of modalities affect the generalization capability of the system. The adaptability of the system to different scanners and protocols is also investigated. A quantitative study is further presented to show the effect of ensemble size and the effectiveness of the ensemble model. Additionally, software and models of our method are made publicly available. The effectiveness and generalization capability of the proposed system show its potential for real-world clinical practice.
Base editors (BEs) enable the generation of targeted single-nucleotide mutations, but currently used rat APOBEC1-based BEs are relatively inefficient in editing cytosines in highly methylated regions or in GpC contexts. By screening a variety of APOBEC and AID deaminases, we show that human APOBEC3A-conjugated BEs and versions we engineered to have narrower editing windows can mediate efficient C-to-T base editing in regions with high methylation levels and GpC dinucleotide content.
Porous Fe3O4/SnO2 core/shell nanorods are successfully fabricated, in which the width and the length of the pores are 5−10 and 10−60 nm, respectively. We prepared 80 wt % of porous Fe3O4/SnO2 core/shell nanorod-wax composites in order to measure their electromagnetic parameters. The measured results indicate that effective complementarities between the dielectric loss and the magnetic loss are realized over 2−18 GHz frequency range, suggesting the porous Fe3O4/SnO2 core/shell nanorods have excellent electromagnetic wave absorption properties. The reflection loss was calculated in terms of the transmit-line theory. The absorption range under −20 dB is from 3.2 to 16.88 GHz for an absorber thickness of 2−5 mm. Moreover, the porous core/shell nanorods exhibit dual-frequency absorption characteristics and their maximum reflection loss reaches −27.38 dB at 16.72 GHz as the absorber thickness is 4 mm. The excellent microwave absorption properties of the porous Fe3O4/SnO2 core/shell nanorods are attributed to effective complementarities between the dielectric loss and the magnetic loss and the special core−shell structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.