The paper represents a test investigation of the mechanical properties and acoustic emission (AE) characteristics of low-strength coal specimens subjected to cyclic loading and unloading. From the lab tests, the following conclusions can be obtained: (1) The axial strain is very well linear with the loading–unloading cycle number, and the circumferential and volumetric strains are approximately quadratic functions with the loading–unloading cycle number; (2) Under the same loading stress interval, the elastic modulus firstly increases and then remains stable with the loading–unloading cycle number. In addition, the higher the maximum stress of a loading–unloading cycle, the more significant the plastic strengthening effect produced by this cycle; (3) The damage calculated by the cumulative AE hit count can better reflect the fact that the damage has been increasing in the loading phase and keeps basically unchanged in the unloading phase. So, the AE hit count, as a damage variable, can better describe the damage development of coal specimens. (4) The significant fluctuation of the AE b value can be used as the precursor of coal specimen failure. Additionally, the AE b value decreases rapidly at coal specimen failure. (5) The closer to the loading–unloading cycle of coal specimen failure, the more accurate the predicted “maximum magnitude” at coal specimen failure.
This paper presents an experimental investigation of acoustic emission (AE) time-frequency characteristics of a water-bearing sandstone specimen in a conventional uniaxial compression test. The main achievements are as follows: (1) The violent fluctuation of AE time domain parameters indicates that the water-bearing sandstone specimen is about to be destroyed. This characteristic provides a theoretical basis for predicting the failure of water-bearing rock in engineering practice. (2) In the elastic phase, the AE b value is the lowest but has a sudden increase after falling into the steady crack propagation phase. In the unsteady crack propagation phase, the AE b value is further increased. This characteristic is of great indicative value for predicting the failure of the water-bearing sandstone specimen. (3) The difference of dominant frequency among the three key points is very small, indicating that the crack initiation and propagation of the water-bearing sandstone specimen has a certain stability in the damage and failure process. But, the two-dimensional frequency spectrum structure of AE waveform signals shows that the closer to failure, the more the number of the frequency spectrum structure peaks. (4) The energy of AE signals is mainly concentrated in the first three frequency bands. The closer to failure, the more the energy proportion of the first three frequency bands is reduced; conversely, the energy proportion of the latter five frequency bands is increased, which leads to more complexity of the failure modes of the water-bearing sandstone specimen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.