Graph is an important data representation which appears in a wide diversity of real-world scenarios. Effective graph analytics provides users a deeper understanding of what is behind the data, and thus can benefit a lot of useful applications such as node classification, node recommendation, link prediction, etc. However, most graph analytics methods suffer the high computation and space cost. Graph embedding is an effective yet efficient way to solve the graph analytics problem. It converts the graph data into a low dimensional space in which the graph structural information and graph properties are maximumly preserved. In this survey, we conduct a comprehensive review of the literature in graph embedding. We first introduce the formal definition of graph embedding as well as the related concepts. After that, we propose two taxonomies of graph embedding which correspond to what challenges exist in different graph embedding problem settings and how the existing work address these challenges in their solutions. Finally, we summarize the applications that graph embedding enables and suggest four promising future research directions in terms of computation efficiency, problem settings, techniques and application scenarios.
Most existing community-related studies focus on detection, which aim to find the community membership for each user from user friendship links. However, membership alone, without a complete profile of what a community is and how it interacts with other communities, has limited applications. This motivates us to consider systematically profiling the communities and thereby developing useful community-level applications. In this paper, we for the first time formalize the concept of community profiling. With rich user information on the network, such as user published content and user diffusion links, we characterize a community in terms of both its internal content profile and external diffusion profile. The difficulty of community profiling is often underestimated. We novelly identify three unique challenges and propose a joint Community Profiling and Detection (CPD) model to address them accordingly. We also contribute a scalable inference algorithm, which scales linearly with the data size and it is easily parallelizable. We evaluate CPD on large-scale real-world data sets, and show that it is significantly better than the state-of-the-art baselines in various tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.