I n this paper, we introduce a new setting for graph embedding, which considers embedding communities instead of individual nodes. We find that community embedding is not only useful for community-level applications such as graph visualization but also provide an exciting opportunity to improve community detection and node classification. Specifically, we consider the interaction between community embedding and detection as a closed loop, through node embedding. On the one hand, node embedding can improve community detection since the detected communities are used to fit a community embedding. On the other hand, community embedding can be used to optimize node embedding by introducing a community-aware high-order proximity. However, in practice, the number of communities can be unknown beforehand; thus we extend our previous Community Embedding (ComE) model. We propose ComE+, a new model which handles both: the unknown truth community assignments and the unknown number of communities present in the dataset. We further develop an efficient inference algorithm for ComE+ for keeping complexity low. Our extensive evaluation shows that ComE+ improves the stateof-the-art baselines in various application tasks, e.g., community detection and node classification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.