Maize (Zea mays) is a major staple crop. Maize kernel size and weight are important contributors to its yield. Here, we measured kernel length, kernel width, kernel thickness, hundred kernel weight, and kernel test weight in 10 recombinant inbred line populations and dissected their genetic architecture using three statistical models. In total, 729 quantitative trait loci (QTLs) were identified, many of which were identified in all three models, including 22 major QTLs that each can explain more than 10% of phenotypic variation. To provide candidate genes for these QTLs, we identified 30 maize genes that are orthologs of 18 rice (Oryza sativa) genes reported to affect rice seed size or weight. Interestingly, 24 of these 30 genes are located in the identified QTLs or within 1 Mb of the significant single-nucleotide polymorphisms. We further confirmed the effects of five genes on maize kernel size/weight in an independent association mapping panel with 540 lines by candidate gene association analysis. Lastly, the function of ZmINCW1, a homolog of rice GRAIN INCOMPLETE FILLING1 that affects seed size and weight, was characterized in detail. ZmINCW1 is close to QTL peaks for kernel size/weight (less than 1 Mb) and contains significant single-nucleotide polymorphisms affecting kernel size/weight in the association panel. Overexpression of this gene can rescue the reduced weight of the Arabidopsis (Arabidopsis thaliana) homozygous mutant line in the AtcwINV2 gene (Arabidopsis ortholog of ZmINCW1). These results indicate that the molecular mechanisms affecting seed development are conserved in maize, rice, and possibly Arabidopsis.Maize (Zea mays) is one of the most important crops and is cultivated worldwide as a source of staple food, animal feed, and industrial materials. According to the Food and Agriculture Organization, the production of maize was 1,016.7 million tons in 2013, which was far more than rice (Oryza sativa) and wheat (Triticum aestivum; 745.7 and 713.1 million tons, respectively). Yield improvement is a central goal of maize breeding. Kernel size and weight are two significant components of maize yield, and many attempts have been made to elucidate the genetic basis of kernel size and weight.Many studies have mapped quantitative trait loci (QTLs) for natural variations in kernel size and weight. (2015) mapped 28 QTLs in a test cross population. Most of these studies used two diverse inbred lines to develop the segregating population and used a limited number of genetic markers to construct the linkage map, which greatly limited the resolution and power to detect rare and/or small-effect QTLs. Large-scale QTL mapping studies including more diverse genetic backgrounds and dense genetic markers would provide more insight into the number and effect of QTLs controlling the natural variations of kernel size and weight in maize.
Incorporating mixed ion is a frequently used strategy to stabilize black-phase formamidinum lead iodide perovskite for high-efficiency solar cells. However, these devices commonly suffer from photoinduced phase segregation and humidity instability. Herein, we find that the underlying reason is that the mixed halide perovskites generally fail to grow into homogenous and high-crystalline film, due to the multiple pathways of crystal nucleation originating from various intermediate phases in the film-forming process. Therefore, we design a multifunctional fluorinated additive, which restrains the complicated intermediate phases and promotes orientated crystallization of α-phase of perovskite. Furthermore, the additives in-situ polymerize during the perovskite film formation and form a hydrogen-bonded network to stabilize α-phase. Remarkably, the polymerized additives endow a strongly hydrophobic effect to the bare perovskite film against liquid water for 5 min. The unencapsulated devices achieve 24.10% efficiency and maintain >95% of the initial efficiency for 1000 h under continuous sunlight soaking and for 2000 h at air ambient of ~50% humid, respectively.
Recently, organic–inorganic metal halide perovskite solar cells (PSCs) have achieved rapid improvement, however, the efficiencies are still behind the Shockley–Queisser theory mainly due to their high energy loss (ELOSS) in open‐circuit voltage (VOC). Due to the polycrystalline nature of the solution‐prepared perovskite films, defects at the grain boundaries as the non‐radiative recombination centers greatly affect the VOC and limit the device efficiency. Herein, poly(vinylidene fluoride) (PVDF) is introduced as polymer‐templates in the perovskite film, where the fluorine atoms in the PVDF network can form strong hydrogen‐bonds with organic cations and coordinate bonds with Pb2+. The strong interaction between PVDF and perovksite enables slow crystal growth and efficient defect passivation, which effectively reduce non‐radiation recombination and minimize ELOSS of VOC. PVDF‐based PSCs achieve a champion efficiency of 24.21% with a excellent voltage of 1.22 V, which is one of the highest VOC values reported for FAMAPb(I/Br)3‐based PSCs. Furthermore, the strong hydrophobic fluorine atoms in PVDF endow the device with excellent humidity stability, the unencapsulated solar cell maintain the initial efficiency of >90% for 2500 h under air ambient of ≈50% humid and a consistently high VOC of 1.20 V.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.