A multiscale and multidirectional network named the Contourlet convolutional neural network (CCNN) is proposed for synthetic aperture radar (SAR) image despeckling. SAR image resolution is not higher than that of optical images. If the network depth is increased blindly, the SAR image detail information flow will become quite weak, resulting in severe vanishing/exploding gradients. In this paper, a multiscale and multidirectional convolutional neural network is constructed, in which a single-stream structure of convolutional layers is replaced with a multiple-stream structure to extract image features with multidirectional and multiscale properties, thus significantly improving the despeckling performance. With the help of the Contourlet, the CCNN is designed with multiple independent subnetworks to respectively capture abstract features of an image in a certain frequency and direction band. The CCNN can increase the number of convolutional layers by increasing the number of subnetworks, which makes the CCNN not only have enough convolutional layers to capture the SAR image features, but also overcome the problem of vanishing/exploding gradients caused by deepening the networks. Extensive quantitative and qualitative evaluations of synthetic and real SAR images show the superiority of our proposed method over the state-of-the-art speckle reduction method.
Android devices are currently widely used in many fields, such as automatic control, embedded systems, the Internet of Things and so on. At the same time, Android applications (apps) always use multiple permissions, and permissions can be abused by malicious apps that disclose users’ privacy or breach the secure storage of information. FlowDroid has been extensively studied as a novel and highly precise static taint analysis for Android applications. Aiming at the problem of complex detection and false alarms in FlowDroid, an improved static detection method based on feature permission and risk rating is proposed. Firstly, the Chi-square test is used to extract correlated permissions related to malicious apps, and mutual information is used to cluster the permissions to generate feature permission clusters. Secondly, risk calculation method based on permissions and combinations of permissions are proposed to identify dangerous data flows. Experiments show that this method can significantly improve detection efficiency while maintaining the accuracy of dangerous data flow detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.