Much has been learned about the hippocampal/entorhinal system, but an overview of how its parts work in an integrated way is lacking. One question regards the function of entorhinal grid cells. We propose here that their fundamental function is to provide a coordinate system for producing mind-travel in the hippocampus, a process that accesses associations with upcoming positions. We further propose that mind-travel occurs during the second half of each theta cycle. By contrast, the first half of each theta cycle is devoted to computing current position using sensory information from the lateral entorhinal cortex (LEC) and path integration information from the medial entorhinal cortex (MEC). This model explains why lesions can abolish hippocampal phase precession but not place fields.
Cells in the hippocampus tuned to spatial location (place cells) typically change their tuning when an animal changes context, a phenomenon known as remapping. A fundamental challenge to understanding remapping is the fact that what counts as a ‘‘context change’’ has never been precisely defined. Furthermore, different remapping phenomena have been classified on the basis of how much the tuning changes after different types and degrees of context change, but the relationship between these variables is not clear. We address these ambiguities by formalizing remapping in terms of hidden state inference. According to this view, remapping does not directly reflect objective, observable properties of the environment, but rather subjective beliefs about the hidden state of the environment. We show how the hidden state framework can resolve a number of puzzles about the nature of remapping.
Cells in the hippocampus tuned to spatial location (place cells) typically change their tuning when an animal changes context, a phenomenon known as remapping. A fundamental challenge to understanding remapping is the fact that what counts as a "context change" has never been precisely defined. Furthermore, different remapping phenomena have been classified on the basis of how much the tuning changes after different types and degrees of context change, but the relationship between these variables is not clear. We address these ambiguities by formalizing remapping in terms of hidden state inference. According to this view, remapping does not directly reflect objective, observable properties of the environment, but rather subjective beliefs about the hidden state of the environment. We show how the hidden state framework can resolve a number of puzzles about the nature of remapping.
Networks that produce persistent firing in response to novel input patterns are thought to be important in working memory and other information storage functions. One possible mechanism for maintaining persistent firing is dendritic voltage bistability in which the depolarized state depends on the voltage dependence of the NMDA conductance at recurrent synapses. In previous models, the hyperpolarized state is dependent on voltage-independent conductances, including GABAA. The interplay of these conductances leads to bistability, but its robustness is limited by the fact that the conductance ratio must be within a narrow range. The GABAB component of inhibitory transmission was not considered in previous analyses. Here, we show that the voltage dependence of the inwardly rectifying potassium (KIR) conductance activated by GABAB receptors adds substantial robustness to network simulations of bistability and the persistent firing that it underlies. The hyperpolarized state is robust because, at hyperpolarized potentials, the GABAB/KIR conductance is high and the NMDA conductance is low; the depolarized state is robust because, at depolarized potentials, the NMDA conductance is high and the GABAB/KIR conductance is low. Our results suggest that this complementary voltage dependence of GABAB/KIR and NMDA conductances makes them a “perfect couple” for producing voltage bistability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.