Environmental exposure to active pharmaceutical ingredients (APIs) can have negative effects on the health of ecosystems and humans. While numerous studies have monitored APIs in rivers, these employ different analytical methods, measure different APIs, and have ignored many of the countries of the world. This makes it difficult to quantify the scale of the problem from a global perspective. Furthermore, comparison of the existing data, generated for different studies/regions/continents, is challenging due to the vast differences between the analytical methodologies employed. Here, we present a global-scale study of API pollution in 258 of the world’s rivers, representing the environmental influence of 471.4 million people across 137 geographic regions. Samples were obtained from 1,052 locations in 104 countries (representing all continents and 36 countries not previously studied for API contamination) and analyzed for 61 APIs. Highest cumulative API concentrations were observed in sub-Saharan Africa, south Asia, and South America. The most contaminated sites were in low- to middle-income countries and were associated with areas with poor wastewater and waste management infrastructure and pharmaceutical manufacturing. The most frequently detected APIs were carbamazepine, metformin, and caffeine (a compound also arising from lifestyle use), which were detected at over half of the sites monitored. Concentrations of at least one API at 25.7% of the sampling sites were greater than concentrations considered safe for aquatic organisms, or which are of concern in terms of selection for antimicrobial resistance. Therefore, pharmaceutical pollution poses a global threat to environmental and human health, as well as to delivery of the United Nations Sustainable Development Goals.
The identification of transformation products (TPs) of pharmaceuticals in the environment is essentially a challenging task due to the lack of standards and the instrumental capabilities required to detect compounds (sometimes unknowns) that are produced under environmental conditions. In this work, we report the use of liquid chromatography/electrospray quadrupole time-of-flight mass spectrometry (LC/QTOF-MS/MS) as a tool for the identification of amoxicillin (AMX) and its main TPs in wastewater and river water samples. Laboratory degradation experiments of AMX were performed in both alkaline and acidic media in order to confirm that the expected transformation pathway in the aquatic media is through the β-lactam ring cleavage. A thorough study was carried out with both standards and real samples (wastewater and river water samples). Four compounds were identified as main TPs: both amoxicillin diketopiperacine-2',5' and amoxilloic acid diastereomers. Amoxilloic acid stereoisomers are reported for the first time in environmental matrices. The transformation product (5R)-amoxicillin diketopiperacine-2',5' was frequently detected in river waters. Besides, another AMX transformation product formed during analysis was also structurally elucidated for the first time (amoxicilloic acid methyl ester) via accurate mass measurements. Collected data show that although AMX is not present as such in environmental samples, different TPs occur. This study represent a valuable indicator of the potential of LC/QTOF-MS/MS for the identification and structural elucidation of TPs in the environment using accurate MS/MS experiments, enabling thus the recognition of the environmental transformation pathway.
The influence of insecticides commonly used for agricultural purposes on beehive depopulation in Uruguay was investigated. Honeycombs, bees, honey and propolis from depopulated hives were analyzed for pesticide residues, whereas from active beehives only honey and propolis were evaluated. A total of 37 samples were analyzed, representing 14,800 beehives. In depopulated beehives only imidacloprid and fipronil were detected and in active beehives endosulfan, coumaphos, cypermethrin, ethion and chlorpyrifos were found. Coumaphos was present in the highest concentrations, around 1,000 μg/kg, in all the propolis samples from active beehives. Regarding depopulated beehives, the mean levels of imidacloprid found in honeycomb (377 μg/kg, Standard Deviation: 118) and propolis (60 μg/kg, Standard Deviation: 57) are higher than those described to produce bee disorientation and fipronil levels detected in bees (150 and 170 μg/kg) are toxic per se. The other insecticides found can affect the global fitness of the bees causing weakness and a decrease in their overall productivity. These preliminary results suggest that bees exposed to pesticides or its residues can lead them in different ways to the beehive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.