BackgroundInfertility is a common complication in diabetic men and experimental animals, mainly due to loss of germ cells by apoptotic cell death. The aim of this study was to evaluate the effects of aqueous and ethanol extracts of Dracaena arborea in streptozotocin-induced ultra-structural spermatogenic alterations in Wistar rats.MethodsDiabetic animals were orally treated with Millipore water (10 ml/kg), sildenafil citrate (1.44 mg/kg) or Dracaena arborea aqueous (500 mg/kg) and ethanol (100 mg/kg) extracts for three weeks. A group of non diabetic rats received Millipore water (10 ml/kg) and served as healthy control group. Blood glucose was monitored at the beginning and the end of the study. One day after the last treatment, animals were sacrificed and the testes immediately removed were morphologically observed and prepared for electron microscopy analysis of spermatogenesis.ResultsOur results showed that Dracaena arborea was devoid of any anti-hyperglycemic activity. In the untreated diabetic rats, hyperglycemia severely damaged the testes morphology as well as the spermatogenic process as evidenced by the: thickness of basement membrane of the seminiferous tubule; mitochondria alteration; abnormal spermatocyte cells displaying polymorphous nuclei, cytoplasmic vacuolization and necrosis; and disorganization and degeneration of sperm germ cells. Administration of sildenafil citrate and Dracaena arborea extracts to the diabetic rats improved testes morphology and reversed, although not completely, the impairment of spermatogenesis; this alleviating effect was more pronounced in animals treated with the aqueous extract (500 mg/kg) of Dracaena arborea.ConclusionDracaena arborea improves testes morphology and restores spermatogenesis in type 1 diabetic rats, without having major anti-hyperglycemic properties. These effects could be attributed to saponins, flavonoids, phenols and sterols revealed in this plant, which could be a useful component in the treatment of diabetes-induced testicular dysfunction.
The polypeptide pattern of red blood cell (RBC) membranes from cow, sheep, horse, rabbit, guinea pig, rat, mouse, analyzed by polyacrylamide gel electrophoresis, was compared to human RBC counterpart. Some qualitative and quantitative differences were noted. Among the high molecular weight components the bands 2.1-2.3 appeared slightly decreased in rabbit and rat and increased in sheep RBC membranes. Band 3 appeared to have a higher molecular weight in the cow, guinea pig and mouse RBCs, and a lower molecular weight in the sheep RBCs. Band 4.1 from the RBC membranes of cow, sheep, rabbit and guinea pig was splitted into two sub-bands, while band 4.2 overlapped with band 4.1 in horse and guinea pig RBC membranes. There are marked differences in the number and position of bands in the 4.5 region, while band 4.9 is present in higher amounts in horse, rabbit and guinea pig RBC membranes. Band 6 (glyceraldehyde 3-phosphate dehydrogenase) was undetectable in horse, rat and mouse RBC membranes and was decreased in sheep, rabbit and guinea pig. There are also major differences in the region of band 7 and below ("post-7"). Band 8 was undetectable in horse, cow and guinea pig, and was in higher amounts in rat. A band corresponding to a molecular weight of about 22 kD in the "post-8" region was present only in guinea pig RBC membranes.
Two polyoxometalates (POMs) with W were synthesized by a two-step, self-assembling method. They were used for stimulation of mesenchymal stem cell differentiation into insulin-producing cells. The nanocompounds (tris(vanadyl)-substituted tungsto-antimonate(III) anions [POM1] and tris-butyltin-21-tungsto-9-antimonate(III) anions [POM2]) were characterized by analytical techniques, including ultraviolet-visible, Fourier transform infrared, nuclear magnetic resonance spectroscopy, and transmission electron microscopy. We found that these polyoxotungstates, with 2-4 nm diameters, did not present toxic effects at the tested concentrations. In vitro, POM1 stimulated differentiation of a greater number of dithizone-positive cells (also organized in clusters) than the second nanocompound (POM2). Based on our in vitro studies, we have concluded that both the POMs tested had significant biological activity acting as active stimuli for differentiation of stem cells into insulin-producing cells. Copyright
BackgroundAnemia is a condition that has multiple origins. One such origin is the destruction of red blood cells’ (RBCs) membrane induced by free radicals. Treatment of anemia could therefore be enhanced by the use of free radicals’ scavengers potentially found in some medicinal plants. In this study, the protective effect of Harungana madagascariensis on the RBCs’ membrane physiology was investigated in vitro and in vivo.MethodsIn vitro hemolytic anemia was induced by incubation of fresh human RBCs with carbontetrachloride (CCl4) in Olive oil (Oo). Relaxation times of protons excited at 20 MHz (Carr-Purcell-Meiboom-Gill pulse sequence) in the absence or presence of paramagnetic Mn2+ ions (T2i for “extracellular” water and T2a for “intracellular” water, respectively) were determined at several temperatures (25–37°C) via Nuclear Magnetic Resonance (NMR) on a Bruker Minispec spectrometer. Water exchange times (Te) were consequently calculated using the Conlon-Outhred equation: 1/Te = (1/T2a) – (1/T2i). Morphological characteristics (mean cell volume, V, and cell surface area, A) were determined by photonic microscopy and the RBCs’ diffusional water permeability (Pd) was calculated as Pd = (1/Te)*(Va/A), where Va is the aqueous volume in the RBC and is about 0.7 of the cell volume (V). The activation energy of the diffusional process (Ea) for the respective temperature range was estimated using the Arrhenius modified equation k = A(T/T0)n*e-Ea/RT. Inhibition of the water diffusion induced by incubation with para-chloro-mercuribenzoic acid (PCMB) at 25, 30 and 37°C was calculated as I(%) = [(Pd control – Pd sample)/Pd control]*100.To investigate the protective influence of the extract on the RBC membrane, inhibition of the water permeability was evaluated on membranes pre-incubated with the Harungana madagascariensis extract. Male rats were used in in vivo investigations. Malondialdehyde (MDA) and cholesterol in the RBC membrane were estimated by induction of lipid peroxidation while the antioxidant properties of catalase (CAT) and superoxide dismutase (SOD) on the membrane were evaluated in regard to their antioxidant properties on the membrane.ResultsT2a significantly decreased at each temperature. Te results were higher in both RBCs and RBCs + extract groups incubated with PCMB compared to non-incubated controls, but differences were not statistically significant. A high percentage (73.81 ± 7.22) of RBCs pre-incubated with the extract presented the regular biconcave shape. Inhibition by PCMB of the RBCs’ membrane water permeability was increased at 30°C and decreased in the presence of extract (25°C and 37°C), while Ea decreased from 30.52 ± 1.3 KJ/mol to 25.49 ± 1.84 KJ/mol. Presence of the Harungana madagascariensis extract normalized the SOD and CAT activities as well as the MDA and membrane cholesterol concentrations altered by the CCl4-induced oxidative stress.ConclusionHarungana madagascariensis could protect the RBCs’ membrane through its antioxidative properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.