Summary. Background: Chronic venous insufficiency (CVI) results when the veins in the legs no longer pump blood back to the heart effectively. Microparticles (MPs) are small membrane vesicles released by several circulating and vascular cells upon activation or apoptosis. Objectives: The purpose of this study was to assess the subpopulations of circulating endothelial (EMPs) and platelet microparticles (PMPs) in CVI, and to disclose their contribution in mediating dysfunction of human peripheral venules. Patients and methods: Human peripheral venules were explanted during leg surgery on patients with CVI and on control subjects (C); concurrently, blood samples were collected and circulating MPs isolated. The techniques used were: flow cytometry, fluorescence and electron microscopy, myograph technique and western-blotting technique. Results: The results showed that compared with controls, patients with CVI had: (i) a marked elevation of circulating EMPs and PMPs; (ii) a structural modification of the venous wall consisting of activation of endothelial and smooth muscle cells, an abundance of intermediary filaments and synthesis of hyperplasic-multilayered basal lamina; (iii) a significantly altered reactivity of the venous wall, closely associated with EMPs and PMPs adherence; (iv) altered contractile response to noradrenaline, acetylcholine, 5-hydroxytryptamine and KCl, and an impeded relaxation in response to sodium nitroprusside; and (iv) a substantially increased protein expression of tissue factor (TF) and of P-Selectin both in the venular vascular wall and on the surface of EMPs and PMPs. Conclusions: The findings indicate that CVI is accompanied by an enhanced release of EMPs and PMPs that contribute to altered dysfunctional response of the venous wall.
Deposition of bioactive coatings composed of zinc oxide, cyclodextrin and cefepime (ZnO/CD/Cfp) was performed by the Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique. The obtained nanostructures were characterized by X-ray diffraction, IR microscopy and scanning electron microscopy. The efficient release of cefepime was correlated with an increased anti-biofilm activity of ZnO/CD/Cfp composites. In vitro and in vivo tests have revealed a good biocompatibility of ZnO/CD/Cfp coatings, which recommend them as competitive candidates for the development of antimicrobial surfaces with biomedical applications. The release of the fourth generation cephalosporin Cfp in a biologically active form from the ZnO matrix could help preventing the bacterial adhesion and the subsequent colonization and biofilm development on various surfaces, and thus decreasing the risk of biofilm-related infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.