This work focused on the effects of the moisture content, slices thickness and microwave power on aspects of energy and exergy, drying kinetics, moisture diffusivity, activation energy, and modeling of the thin layer drying of kiwi slices. Results showed that energy and exergy efficiency increased with increasing microwave power and decreasing slice thickness while values of energy efficiency (15.15-32.27 %) were higher than exergy efficiency (11.35-24.68 %). Also, these parameters decreased with a decrease in moisture content. Specific energy consumption varied from 7.79 to 10.02, 8.59 to 10.77 and 9.57 to16.20 to MJ/kg water evaporated for 3, 6 and 9 mm, respectively. The values of exergy loss were found to be in the range of 5.90 and 14.39 MJ/kg water and decreased as the microwave power increased and slice thickness decreased. Effective diffusivity increased with decreasing moisture content and increasing microwave power and slice thickness. Average effective moisture diffusivity of kiwi slices changes between 1.47 × 10
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.