Antibiotic resistance in Gram-negative uropathogens is a major global concern. Worldwide, the prevalence of Enterobacteriaceae that produce extended-spectrum β-lactamase or carbapenemase enzymes continues to increase at alarming rates. Likewise, resistance to other antimicrobial agents including aminoglycosides, sulphonamides and fluoroquinolones is also escalating rapidly. Bacterial resistance has major implications for urological practice, particularly in relation to catheter-associated urinary tract infections (UTIs) and infectious complications following transrectal-ultrasonography-guided biopsy of the prostate or urological surgery. Although some new drugs with activity against Gram-negative bacteria with highly resistant phenotypes will become available in the near future, the existence of a single agent with activity against the great diversity of resistance is unlikely. Responding to the challenges of Gram-negative resistance will require a multifaceted approach including considered use of current antimicrobial agents, improved diagnostics (including the rapid detection of resistance) and surveillance, better adherence to basic measures of infection prevention, development of new antibiotics and research into non-antibiotic treatment and preventive strategies.
SUMMARY Infections due to Gram-negative bacilli (GNB) are a leading cause of morbidity and mortality worldwide. The extent of antibiotic resistance in GNB in countries of the Gulf Cooperation Council (GCC), namely, Saudi Arabia, United Arab Emirates, Kuwait, Qatar, Oman, and Bahrain, has not been previously reviewed. These countries share a high prevalence of extended-spectrum-β-lactamase (ESBL)- and carbapenemase-producing GNB, most of which are associated with nosocomial infections. Well-known and widespread β-lactamases genes (such as those for CTX-M-15, OXA-48, and NDM-1) have found their way into isolates from the GCC states. However, less common and unique enzymes have also been identified. These include PER-7, GES-11, and PME-1. Several potential risk factors unique to the GCC states may have contributed to the emergence and spread of β-lactamases, including the unnecessary use of antibiotics and the large population of migrant workers, particularly from the Indian subcontinent. It is clear that active surveillance of antimicrobial resistance in the GCC states is urgently needed to address regional interventions that can contain the antimicrobial resistance issue.
Carbapenem resistant Enterobacteriaceae (CRE) pose an urgent risk to global human health. CRE that are non-susceptible to all commercially available antibiotics threaten to return us to the pre-antibiotic era. Using Single Molecule Real Time (SMRT) sequencing we determined the complete genome of a pandrug-resistant Klebsiella pneumoniae isolate, representing the first complete genome sequence of CRE resistant to all commercially available antibiotics. The precise location of acquired antibiotic resistance elements, including mobile elements carrying genes for the OXA-181 carbapenemase, were defined. Intriguingly, we identified three chromosomal copies of an ISEcp1-blaOXA-181 mobile element, one of which has disrupted the mgrB regulatory gene, accounting for resistance to colistin. Our findings provide the first description of pandrug-resistant CRE at the genomic level, and reveal the critical role of mobile resistance elements in accelerating the emergence of resistance to other last resort antibiotics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.