The purpose of this study is to analyze the combustion characteristics of the port fuel injection (PFI) engine considering the fuel mixing ratio, bore to stroke (B/S) ratio and gaseous and particle emissions. Experiments were conducted in a small single-cylinder PFI engine with a displacement of 125 cc. The fuel used in the experiment was a mixture of pure gasoline and ethanol. The engine was operated at 5000 rpm at full load and wide-open throttle. In addition, combustion and exhaust characteristics of the engines with a B/S ratio of 0.88 and 1.15 were analyzed. The combustion pressure inside the combustion chamber was measured to analyze the indicated mean effective pressure (IMEP) and the heat release rate, and the combustion rate was calculated. In the results of combustion characteristics by the difference of B/S ratio, the influence of flame propagation velocity and turbulence intensity is the largest. The 0.88 B/S ratio engine, which has a small bore, has a faster combustion rate than the 1.15 B/S ratio engine due to its larger flame surface area and larger turbulence intensity. This represents a higher efficiency combustion result. Finally, the high oxygen content of ethanol has the characteristic of decreasing soot formation and increasing particle oxidation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.