This article deals with the issue of designing a flight tracking controller for an unmanned aerial vehicle type of quadrotor based on an optimal model-free fuzzy logic control approach. The main design objective is to perform an automatic flight trajectory tracking under multiple model uncertainties related to the knowledge of the nonlinear dynamics of the system. The optimal control is also addressed taking into consideration unknown external disturbances. To achieve this goal, we propose a new optimal model-free fuzzy logic–based decentralized control strategy where the influence of the interconnection term between the subsystems is minimized. A model-free controller is firstly designed to achieve the convergence of the tracking error. For this purpose, an adaptive estimator is proposed to ensure the approximation of the nonlinear dynamic functions of the quadrotor. The fuzzy logic compensator is then introduced to deal with the estimation error. Moreover, the optimization problem to select the optimal design parameters of the proposed controller is solved using the bat algorithm. Finally, a numerical validation based on the Parrot drone platform is conducted to demonstrate the effectiveness of the proposed control method with various flying scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.