This paper deals with the global energy consumption to forecast future projections based on primary energy, global oil, coal and natural gas consumption using a hybrid Cuckoo optimization algorithm and information of British Petroleum Company plc and BP Amoco plc. The Artificial Neural Network (ANN) has some significant disadvantages, such as training slowly, easiness to fall into local optimal point, and sensitivity of the initial weights and bias. To overcome the shortcomings, an improved ANN structure, that is optimized by the Cuckoo Optimization Algorithm (COA), is proposed in this paper (COANN). The performance of the COANN is evaluated with Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Correlation Coefficient (CC) between the output of the model and the actual dataset. Finally, CO 2 emission in the world by 2050 is forecasted using COANN. The findings showed that COANN is a helpful and reliable tool for monitoring global warming. This proposed method will assist experts, policy planners and researchers who study greenhouse gases. The method can be used as a potential tool for policymakers and governments to make policy on global warming monitoring and control. The proposed method can play a key role in the global climate changes policies and can have a significant impact on the efficiency or inefficiency of government's intervention policies.
Money demand is one of the most important economic variables which are a critical component in appointing and choosing appropriate monetary policy, because it determines the transmission of policy-driven change in monetary aggregates to the real sector. In this paper, the data of economic indicators in Iran are presented for estimating the money demand using biogeography-based optimization (BBO) algorithm, particle swarm optimization (PSO) algorithm, and a new hybrid metaheuristic method based on biogeography-based optimization and particle swarm optimization algorithm (BBPSO). The data are used in two forms (i.e. linear and exponential) to estimate money demand values based on true liquidity, Consumer price index, GDP, lending interest rate, Inflation, and official exchange rate. The available data are partly used for finding optimal or near-optimal values of weighting parameters (1974–2013) and partly for testing the models (2014–2018). The performance of methods is evaluated using mean squared error (MSE), root mean squared error (RMSE), and mean absolute error (MAE). According to the simulation results, the proposed method (i.e. BBPSO) outperformed the other models. The findings proved that the recommended method was an appropriate tool for effective money demand prediction in Iran. These data were the result of a comprehensive look at the most influential factors for money market demand. With this method, the demand side of this market was clearly defined. Along with other markets, the consequences of economic policy could be analyzed and predicted. • The article provides a method for observing the effect of economic scenarios on the money market and the analysis obtained by this proposed method allows experts, public sector economics, and monetary economist to see a clearer explanation of the country's liquidity plan. • The method presented in this article can be beneficial for the policy makers and monetary authorities during their decision-making process.
Poverty is a multifaceted phenomenon that its study and analysis from all dimensions requires accurate knowledge. In the past, poverty was measured only by the income approach. That is, only people's incomes were compared to the poverty line. But this approach does not identify other dimensions of poverty. Given the importance of discussing poverty in the economies of developing countries, this article examines and models poverty in the Islamic Republic of Iran. This article presents the internal and external dimensions of poverty in the period 1996–2017. In this paper, to model the poverty in Iran, the ANFIS method optimized with a differential evolution algorithm was used. In this method, a differential evolution algorithm was used to train the ANFIS system instead of the FIS system. To evaluate the strength of the model, mean squared error (MSE), root mean squared error (RMSE), Mean absolute error (MAE), STD_error, Mean_error criteria have been used. The data used in this paper are from the World Development Index (WDI) Database, the World Bank Good Governance Indices, the Heritage Foundation's Economic Freedom Indices, and the United Nations data. This information is related to Iran and in the period (1996–2017). The purpose of this paper is to train the ANFIS network with DE algorithm using time series data and to model the data related to the Iran Multidimensional Poverty Index using the trained network. Multidimensional Poverty Index is a very suitable index for monitoring data. Poverty is in society. With the help of this data, we can assess the trend of poverty and income distribution and welfare in this country. The results of this study showed that training the ANFIS system by differential evolution algorithm, can make a very good improvement in the modeling process and reduce error criteria and improve the accuracy of this method. This article has been compiled with the aim of modeling poverty in the Islamic Republic of Iran. The method used in this paper is ANFIS network training using the differential evolution algorithm The use of evolutionary algorithms to train fuzzy systems and artificial neural networks leads to improved performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.