Potassium (K) is considered as an essential nutrient and a major constituent within all living cells. Naturally, soils contain K in larger amounts than any other nutrients; however most of the K is unavailable for plant uptake. Application of chemical fertilizers has a considerably negative impact on environmental sustainability. It is known that potassium solubilizing bacteria (KSB) can solubilize K-bearing minerals and convert the insoluble K to soluble forms of K available to plant uptake. Many bacteria such as Acidothiobacillus ferrooxidans, Paenibacillus spp., Bacillus mucilaginosus, B. edaphicus, and B. circulans have capacity to solubilize K minerals (e.g., biotite, feldspar, illite, muscovite, orthoclase, and mica). KSB are usually present in all soils, although their number, diversity and ability for K solubilization vary depending upon the soil and climatic conditions. KSB can dissolve silicate minerals and release K through the production of organic and inorganic acids, acidolysis, polysaccharides, complexolysis, chelation, and exchange reactions. Hence, the production and management of biological fertilizers containing KSB can be an effective alternative to chemical fertilizers. This article presents an overview of current trends and challenges on KSB, mechanisms and their role in plant growth promotion, and eventually gives some perspectives for research on K in agriculture.Keywords: Bio-fertilizer, potassium bearing minerals; potassium solubilization, plant and bacteria interactions, PGPRs 898Etesami et al
In this study, two strains of Aspergillus sp. and Lysinibacillus sp. with remarkable abilities to degrade low-density polyethylene (LDPE) were isolated from landfill soils in Tehran using enrichment culture and screening procedures. The biodegradation process was performed for 126 days in soil using UV- and non-UV-irradiated pure LDPE films without pro-oxidant additives in the presence and absence of mixed cultures of selected microorganisms. The process was monitored by measuring the microbial population, the biomass carbon, pH and respiration in the soil, and the mechanical properties of the films. The carbon dioxide measurements in the soil showed that the biodegradation in the un-inoculated treatments were slow and were about 7.6% and 8.6% of the mineralisation measured for the non-UV-irradiated and UV-irradiated LDPE, respectively, after 126 days. In contrast, in the presence of the selected microorganisms, biodegradation was much more efficient and the percentages of biodegradation were 29.5% and 15.8% for the UV-irradiated and non-UV-irradiated films, respectively. The percentage decrease in the carbonyl index was higher for the UV-irradiated LDPE when the biodegradation was performed in soil inoculated with the selected microorganisms. The percentage elongation of the films decreased during the biodegradation process. The Fourier transform infra-red (FT-IR), x-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to determine structural, morphological and surface changes on polyethylene. These analyses showed that the selected microorganisms could modify and colonise both types of polyethylene. This study also confirmed the ability of these isolates to utilise virgin polyethylene without pro-oxidant additives and oxidation pretreatment, as the carbon source.
Plant growth promoting rhizobacteria (PGPR) can enhance plant growth by alleviating soil stresses. Although previously investigated, some new interesting details are presented regarding the alleviating affects of Azospirillum sp. on wheat growth under drought stress in this research work. We hypothesized that the isolated strains of Azospirillum sp. may alleviate the adverse effects of drought stress on wheat (Triticum aestivum L.) growth. Three different strains of Azospirillum lipoferum (B1, B2 and B3) were used to inoculate wheat seedlings under drought. During the flowering stage the seedlings were subjected to three drought levels with five different time longevity, including control. Pots were water stressed at 80% (S0), 50% (S1) and 25% (S2) of field capacity moisture in a 25 day-period. Soil and plant water properties including water potential and water content, along with their effects on bacterial inoculum and wheat growth, were completely monitored during the experiment. While stress intensity significantly affected bacterial population and wheat growth, stress longevity only affected wheat water potential and water content. Compared to uninoculated treatments strain B3 (fixing and producing the highest amounts of N and auxin, respectively, with P solubilizing and ACC-deaminase activities) increased wheat yield at S1 and S2 by 43 and 109%, respectively. However, strain B2 (producing siderophore) was the most resistant strain under drought stress. The results of this experiment may elucidate the more efficient strains of Azospirillum sp. for wheat inoculation under drought stress and the mechanisms by which they alleviate the stress.
Agricultural soils in Iran are predominantly calcareous with very low plant available phosphorus (P) content. In addition to their beneficial N 2 -fixing activity with legumes, rhizobia can improve plant P nutrition by mobilizing inorganic and organic P. Isolates from different cross-inoculation groups of rhizobia, obtained from Iranian soils were tested for their ability to dissolve inorganic and organic phosphate. From a total of 446 rhizobial isolates tested for P solubilization by the formation of visible dissolution halos on agar plates, 198 (44%) and 341(76%) of the isolates, solubilized Ca 3 (PO 4 ) 2 (TCP) and inositol hexaphosphate (IHP), respectively. In the liquid Sperber TCP medium, phosphate-solubilizing bacteria (Bacillus sp. and Pseudomonas fluorescens) used as positive controls released an average of 268.6 mg L )1 of P after 360 h incubation. This amount was significantly (P < 0.05) higher than those observed with all rhizobia tested. The group of Rhizobium leguminosarum bv. viciae mobilized in liquid TCP Sperber medium significantly (P < 0.05) more P (197.1 mg L )1 in 360 h) than other rhizobia tested,. This group also showed the highest dissolution halo on the TCP solid Sperber medium. The release of soluble P was significantly correlated with a drop in the pH of the culture filtrates indicating the importance of acid production in the mobilization process. None of the 70 bradyrhizobial isolates tested was able to solubilize TCP. These results indicate that many rhizobia isolated from soils in Iran are able to mobilize P from organic and inorganic sources and this beneficial effect should be tested with crops grown in Iran.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.