Agricultural soils in Iran are predominantly calcareous with very low plant available phosphorus (P) content. In addition to their beneficial N 2 -fixing activity with legumes, rhizobia can improve plant P nutrition by mobilizing inorganic and organic P. Isolates from different cross-inoculation groups of rhizobia, obtained from Iranian soils were tested for their ability to dissolve inorganic and organic phosphate. From a total of 446 rhizobial isolates tested for P solubilization by the formation of visible dissolution halos on agar plates, 198 (44%) and 341(76%) of the isolates, solubilized Ca 3 (PO 4 ) 2 (TCP) and inositol hexaphosphate (IHP), respectively. In the liquid Sperber TCP medium, phosphate-solubilizing bacteria (Bacillus sp. and Pseudomonas fluorescens) used as positive controls released an average of 268.6 mg L )1 of P after 360 h incubation. This amount was significantly (P < 0.05) higher than those observed with all rhizobia tested. The group of Rhizobium leguminosarum bv. viciae mobilized in liquid TCP Sperber medium significantly (P < 0.05) more P (197.1 mg L )1 in 360 h) than other rhizobia tested,. This group also showed the highest dissolution halo on the TCP solid Sperber medium. The release of soluble P was significantly correlated with a drop in the pH of the culture filtrates indicating the importance of acid production in the mobilization process. None of the 70 bradyrhizobial isolates tested was able to solubilize TCP. These results indicate that many rhizobia isolated from soils in Iran are able to mobilize P from organic and inorganic sources and this beneficial effect should be tested with crops grown in Iran.
Fluorescent pseudomonads are among the most influencing plant growth-promoting rhizobacteria in plants rhizosphere. In this research work the plant growthpromoting activities of 40 different strains of Pseudomonas fluorescens and Pseudomonas putida, previously isolated from the rhizosphere of wheat (Triticum aestivum L.) and canola (Brassica napus L.) and maintained in the microbial collection of Soil and Water Research Institute, Tehran, Iran, were evaluated. The ability of bacteria to produce auxin and siderophores and utilizing P sources with little solubility was determined. Four strains of Wp1 (P. putida), Cfp10 (Pseudomonas sp.), Wp150 (P. putida), and Wp159 (P. putida) were able to grow in the DF medium with ACC. Thirty percent of bacterial isolates from canola rhizosphere and 33% of bacterial isolates from wheat rhizosphere were able to produce HCN. The results indicate that most of the bacteria, tested in the experiment, have plant growth-promoting activities. This is the first time that such PGPR species are isolated from the Iranian soils. With respect to their great biological capacities they can be used for wheat and canola inoculation in different parts of the world, which is of very important agricultural implications.
Nodulation of soybeans grown in semi-arid region of southern parts of Iran is poor due to high air and soil temperatures. Here we identified thermotolerant isolates of soybean bradyrhizobia and evaluated the nitrogen fixation efficiency of the isolates under heat stress conditions in greenhouse and field experiments. The ability of fifty-six bradyrhizobial isolates to grow on solid or in liquid yeast extract mannitol medium at 38 and 41°C was evaluated. We identified 19 isolates, which were able to grow at 38°C and 10 isolates able to grow at 41°C. Greenhouse experiments were carried out at 28 and 38°C to study the nitrogen-fixing capacity of the isolates under optimal and high temperature conditions. Ten isolates had a symbiotic index of effectiveness of 80% or greater compared with nitrogen-fertilized treatments in greenhouse experiments at 28°C. Some thermotolerant isolates demonstrated good nitrogen-fixing performance at 38°C. Eight isolates were selected for use in a field trial in the natural high temperature environment of the Dezful region in Iran. Our results demonstrate that geographical origin can have a great influence on the successful selection of thermotolerant bradyrhizobia. Our thermotolerant isolates were mainly obtained from high-temperature regions, and improved shoot dry matter, nitrogen-uptake and seed yield of the plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.