The electro-chemo-mechanical response of robust and flexible free-standing films made of three nanoperforated poly(lactic acid) (pPLA) layers separated by two anodically polymerized poly(3,4-ethylenedioxythiophene) (PEDOT) layers, has been demonstrated. The mechanical and electrochemical properties of these films, which are provided by pPLA and PEDOT, respectively, have been studied by nanoindentation, cyclic voltammetry and galvanostatic charge-discharge assays. The unprecedented combination of properties obtained for this system is appropriated for its utilization as a Faradaic motor, also named artificial muscle. Application of square potential waves has shown important bending movements in the films, which can be repeated for more than 500 cycles without damaging its mechanical integrity. Furthermore, the actuator is able to push a huge amount of mass, as it has been proved by increasing the mass of the passive pPLA up to 328% while keeping unaltered the mass of electroactive PEDOT.
The development of high-speed nanoindentation has enabled the acquisition of mechanical property maps over square millimeters of area with micron-scale resolution in reasonable amounts of time. This provides rich datasets which contain morphological and statistical data on the variation of mechanical properties in a microstructure. However, the influences of the indentation size and the deconvolution method employed on the extracted phase properties remain unclear. In this work, a range of depth/spacing increments was explored on two different materials systems, an Al-Cu eutectic alloy and a duplex stainless steel, representing an ‘easy’ and a ‘hard’ case for statistical deconvolution, respectively. A total of ~ 500,000 indentations were performed. A variety of statistical analyses were then employed and compared: the 1D analysis of Ulm et al. using 2 and 3 phases, a 2D rotated Gaussian fit, K-means clustering, and a visual comparison to 2D histograms. This revealed several different sensitivities of the deconvolution methods to various types of error in phase identification.
Graphic abstract
The microstructure and micromechanical properties of the constitutive phases of a particular duplex stainless steel in various processing conditions have been characterized. Hardness (H), elastic modulus (E) and H/E cartography maps were obtained by using a high-speed nanoindentation mapping technique. Small-scale H and E evolution at different processing conditions has been investigated by statistical analysis of a large number of nanoindentations (10,000 imprints per sample). Two mechanically distinct phases, ferrite (α) and austenite (γ), were deconvoluted from this dataset using Ulm and Constantinides’ method, with the remaining values assigned to a third mechanical phase linked to composite-like (containing α/γ interphase boundaries) regions. These mechanical property phase assessments were supplemented by overlaying crystallographic phase maps obtained by electron backscattered diffraction. An excellent correlation between microstructure and small-scale mechanical properties was achieved, especially when considering the ratio H/E.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.