Robust and flexible free-standing films made of spin-coated poly(lactic acid) (PLA) and poly(3,4-ethylenedioxythiophene) (PEDOT) nanolayers have been prepared. A steel sheet coated with a sacrificial layer of PEDOT:poly(styrenesulfonate) (PSS) and a spincoated nanolayer of PLA was used as working electrode for the anodic polymerization of 3,4-ethylenedioxythiophene monomer. The latter was only successfully accomplished when rounded-shape nanoperforations of average diameter 4914 nm were introduced into PLA layers, which was achieved by combining the phase segregation processes undergone by immiscible PLA:poly(vinyl alcohol) (PVA) mixtures with selective solvent etching to remove PVA domains. Nanoperforations allowed the utilization of the semiconducting PEDOT:PSS sacrificial layer to immobilize the electropolymerized PEDOT chains. Morphological and topographical studies show the templating effect of PEDOT layers. In addition of flexibility and mechanical strength, free-standing 5-layered films present good electrochemical activity, evidencing their potential ability to reversibly exchange ions with the medium.These properties offer important advantages with respect to those of neat PLA and supported PEDOT films, as has been illustrated by cell culture and protein adsorption assays. Cell cultures evidenced the superior behavior of 5-layered films as bioactive platforms for fibroblast and epithelial cells proliferation, while adsorption assays reflected their potential as selective bioadhesive surfaces for protein separation.
The electro-chemo-mechanical response of robust and flexible free-standing films made of three nanoperforated poly(lactic acid) (pPLA) layers separated by two anodically polymerized poly(3,4-ethylenedioxythiophene) (PEDOT) layers, has been demonstrated. The mechanical and electrochemical properties of these films, which are provided by pPLA and PEDOT, respectively, have been studied by nanoindentation, cyclic voltammetry and galvanostatic charge-discharge assays. The unprecedented combination of properties obtained for this system is appropriated for its utilization as a Faradaic motor, also named artificial muscle. Application of square potential waves has shown important bending movements in the films, which can be repeated for more than 500 cycles without damaging its mechanical integrity. Furthermore, the actuator is able to push a huge amount of mass, as it has been proved by increasing the mass of the passive pPLA up to 328% while keeping unaltered the mass of electroactive PEDOT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.