Exploiting the excellent electronic properties of two-dimensional (2D) materials to fabricate advanced electronic circuits is a major goal for the semiconductor industry1,2. However, most studies in this field have been limited to the fabrication and characterization of isolated large (more than 1 µm2) devices on unfunctional SiO2–Si substrates. Some studies have integrated monolayer graphene on silicon microchips as a large-area (more than 500 µm2) interconnection3 and as a channel of large transistors (roughly 16.5 µm2) (refs. 4,5), but in all cases the integration density was low, no computation was demonstrated and manipulating monolayer 2D materials was challenging because native pinholes and cracks during transfer increase variability and reduce yield. Here, we present the fabrication of high-integration-density 2D–CMOS hybrid microchips for memristive applications—CMOS stands for complementary metal–oxide–semiconductor. We transfer a sheet of multilayer hexagonal boron nitride onto the back-end-of-line interconnections of silicon microchips containing CMOS transistors of the 180 nm node, and finalize the circuits by patterning the top electrodes and interconnections. The CMOS transistors provide outstanding control over the currents across the hexagonal boron nitride memristors, which allows us to achieve endurances of roughly 5 million cycles in memristors as small as 0.053 µm2. We demonstrate in-memory computation by constructing logic gates, and measure spike-timing dependent plasticity signals that are suitable for the implementation of spiking neural networks. The high performance and the relatively-high technology readiness level achieved represent a notable advance towards the integration of 2D materials in microelectronic products and memristive applications.
Abstract-This work presents measured results from test chips containing circuits implemented with micro-electro-mechanical (MEM) relays. The relay circuits designed on these test chips illustrate a range of important functions necessary for the implementation of integrated VLSI systems and lend insight into circuit design techniques optimized for the physical properties of these devices. To explore these techniques a hybrid electro-mechanical model of the relays' electrical and mechanical characteristics has been developed, correlated to measurements, and then also applied to predict MEM relay performance if the technology were scaled to a 90 nm technology node. A theoretical, scaled, 32-bit MEM relay-based adder, with a single-bit functionality demonstrated by the measured circuits, is found to offer a factor of ten energy efficiency gain over an optimized CMOS adder for sub-20 MOPS throughputs at a moderate increase in area.
Abstract-This paper describes the micro-architecture and circuit techniques for building multipliers with micro-electromechanical (MEM) relays. By optimizing the circuits and micro-architecture to suit relay device characteristics, the performance of the relay based multiplier is improved by a factor of ~8x over any known static CMOS-style implementation, and ~4x over CMOS pass-gate equivalent implementations. A 16-bit relay multiplier is shown to offer ~10x lower energy per operation at sub-10 MOPS throughputs when compared to an optimized CMOS multiplier at an equivalent 90 nm technology node. To demonstrate the viability of this technology, we experimentally demonstrate the operation of the primary multiplier building block: a full (7:3) compressor, built with 98 MEM-relays, which is the largest working MEM-relay circuit reported to date.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.