Precise, reliable, and speedy contamination detection and disinfection is an ongoing challenge for the food-service industry. Contamination in food-related services can cause foodborne illness, endangering customers and jeopardizing provider reputations. Fluorescence imaging has been shown to be capable of identifying organic residues and biofilms that can host pathogens. We use new fluorescence imaging technology, applying Xception and DeepLabv3+ deep learning algorithms to identify and segment contaminated areas in images of equipment and surfaces. Deep learning models demonstrated a 98.78% accuracy for differentiation between clean and contaminated frames on various surfaces and resulted in an intersection over union (IoU) score of 95.13% for the segmentation of contamination. The portable imaging system’s intrinsic disinfection capability was evaluated on S. enterica, E. coli, and L. monocytogenes, resulting in up to 8-log reductions in under 5 s. Results showed that fluorescence imaging with deep learning algorithms could help assure safety and cleanliness in the food-service industry.
The fish industry experiences substantial illegal, unreported, and unregulated (IUU) activities within traditional supply chain systems. Blockchain technology and the Internet of Things (IoT) are expected to transform the fish supply chain (SC) by incorporating distributed ledger technology (DLT) to build trustworthy, transparent, decentralized traceability systems that promote secure data sharing and employ IUU prevention and detection methods. We have reviewed current research efforts directed toward incorporating Blockchain in fish SC systems. We have discussed traceability in both traditional and smart SC systems that make use of Blockchain and IoT technologies. We demonstrated the key design considerations in terms of traceability in addition to a quality model to consider when designing smart Blockchain-based SC systems. In addition, we proposed an Intelligent Blockchain IoT-enabled fish SC framework that uses DLT for the trackability and traceability of fish products throughout harvesting, processing, packaging, shipping, and distribution to final delivery. More precisely, the proposed framework should be able to provide valuable and timely information that can be used to track and trace the fish product and verify its authenticity throughout the chain. Unlike other work, we have investigated the benefits of integrating machine learning (ML) into Blockchain IoT-enabled SC systems, focusing the discussion on the role of ML in fish quality, freshness assessment and fraud detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.