Mechanical properties and manufacturing processes of Glass Fiber/Polypropylene (GF/PP) composites for application of flexible internal long bone fracture fixation plates have been investigated. PP/Short Chopped Glass Fiber (PPSCGF), PP/Long Glass Fiber (PPLGF) and PP/Long Glass Fiber Yarn (PPLGFY) were used in fabrication of the fixation plates. The PPSCGF and PPLGF plates were made by the heat-compressing process and Three-dimensional (3D) printing method was used to make the PPLGFY ones. The values of Young’s modulus, tensile strength, flexural modulus and strength, and impact strength of the PPSCGF in the fiber longitudinal direction were found to be [Formula: see text]GPa, [Formula: see text]MPa, [Formula: see text]GPa, [Formula: see text]MPa and [Formula: see text]kJ/m2, respectively. Where, these values for the PPLGF were to [Formula: see text]GPa, [Formula: see text]MPa, [Formula: see text]GPa, [Formula: see text]MPa, and [Formula: see text]kJ/m2 and for the PPLGFY were to [Formula: see text]GPa, [Formula: see text]MPa, [Formula: see text]GPa, [Formula: see text]MPa and [Formula: see text]kJ/m2. These have been found to be in close agreement with the human bone properties. Furthermore, the strength and modulus values of the plates were reasonable to be used as a bone implant applicable for bone fracture reconstructions. Hence, the study concluded that the GF/PP composites are useful for load-bearing during daily activities and would be recommended as a choice in orthopedic fixation plate applications. It will help the researchers for development of new fixation designs and the clinicians for better patient’s therapy in future.
Citation: Saidpour, S. (2006) 'Assessment of carbon fibre composite fracture fixation plate using finite element analysis'. Annals of Biomedical Engineering, 34(7), pp. 1157-1163.Published version available at: http://dx.doi.org/10.1007/s10439-006-9102-z
Publisher statement:The original publication is available at springerlink.com
Information on how to cite items within roar@uel:http://www.uel.ac.uk/roar/openaccess.htm#Citing Annals of Biomedical Engineering, Vol. 34, No. 7, July 2006 (2006
AbstractIn the internal fixation of fractured bone by means of bone-plates fastened to the bone on its tensile surface, an on-going concern has been the excessive stress shielding of the bone by the excessively-stiff stainless-steel plate. The compressive stress shielding at the fractureinterface immediately after fracture-fixation delays callus formation and bone healing. Likewise, the tensile stress shielding in the layer of bone underneath the plate can cause osteoporosis and decrease in tensile strength of this layer.In this study a novel forearm internal fracture fixation plate made from short carbon fibre reinforced plastic (CFRP) was used in an attempt to address the problem. Accordingly, it has been possible to analyse the stress distribution in the composite plates using finite-element modelling.A three-dimensional, quarter-symmetric finite element model was generated for the plate system. The stress state in the underlying bone was examined for several loading conditions. Based on the analytical results the composite plate system is likely to reduce stress-shielding effects at the fracture site when subjected to bending and torsional loads. The design of the plate was further optimised by reducing the width around the innermost holes.
228
J. K. Kim et al.Abstract-A round-robin test programme has been carried out to characterise the mode I interlaminar fracture behaviour of E-glass woven fabric reinforced vinyl ester matrix composites. Special emphasis has been placed on the effect of silane coupling agent on the stability of interlaminar crack propagation and fracture toughness. Sixteen laboratories participated in this programme. Each laboratory was supplied with composite laminates of thicknesses of its own choice and conducted the tests according to its own procedures. The results showed that variations in interlaminar fracture toughness between laboratories were very large in spite of slight differences in the test procedures used, such as specimen dimensions, test speed and data reduction schemes. Nevertheless, the general trends were clearly identified with respect to different silane coupling agents. Other observations and the implications are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.