Atomically thin molybdenum disulfide (MoS2) is a promising two-dimensional semiconductor for high-performance flexible electronics, sensors, transducers, and energy conversion. Here, piezoresistive strain sensing with flexible MoS2 field-effect transistors (FETs) made from highly uniform large-area films is demonstrated. The origin of the piezoresistivity in MoS2 is the strain-induced band gap change, which is confirmed by optical reflection spectroscopy. In addition, the sensitivity to strain can be tuned by more than 1 order of magnitude by adjusting the Fermi level via gate biasing.
Phase-change materials (PCMs) offer a compelling platform for active metaoptics, owing to their large index contrast and fast yet stable phase transition attributes. Despite recent advances in phase-change metasurfaces, a fully integrable solution that combines pronounced tuning measures, i.e., efficiency, dynamic range, speed, and power consumption, is still elusive. Here, we demonstrate an in situ electrically driven tunable metasurface by harnessing the full potential of a PCM alloy, Ge2Sb2Te5 (GST), to realize non-volatile, reversible, multilevel, fast, and remarkable optical modulation in the near-infrared spectral range. Such a reprogrammable platform presents a record eleven-fold change in the reflectance (absolute reflectance contrast reaching 80%), unprecedented quasi-continuous spectral tuning over 250 nm, and switching speed that can potentially reach a few kHz. Our scalable heterostructure architecture capitalizes on the integration of a robust resistive microheater decoupled from an optically smart metasurface enabling good modal overlap with an ultrathin layer of the largest index contrast PCM to sustain high scattering efficiency even after several reversible phase transitions. We further experimentally demonstrate an electrically reconfigurable phase-change gradient metasurface capable of steering an incident light beam into different diffraction orders. This work represents a critical advance towards the development of fully integrable dynamic metasurfaces and their potential for beamforming applications.
Bioinspired materials can mimic the stem cell environment and modulate stem cell differentiation and proliferation. In this study, biomimetic micro/nanoenvironments were fabricated by cell-imprinted substrates based on mature human keratinocyte morphological templates. The data obtained from atomic force microscopy and field emission scanning electron microscopy revealed that the keratinocyte-cell-imprinted poly(dimethylsiloxane) casting procedure could imitate the surface morphology of the plasma membrane, ranging from the nanoscale to the macroscale, which may provide the required topographical cell fingerprints to induce differentiation. Gene expression levels of the genes analyzed (involucrin, collagen type I, and keratin 10) together with protein expression data showed that human adipose-derived stem cells (ADSCs) seeded on these cell-imprinted substrates were driven to adopt the specific shape and characteristics of keratinocytes. The observed morphology of the ADSCs grown on the keratinocyte casts was noticeably different from that of stem cells cultivated on the stem-cell-imprinted substrates. Since the shape and geometry of the nucleus could potentially alter the gene expression, we used molecular dynamics to probe the effect of the confining geometry on the chain arrangement of simulated chromatin fibers in the nuclei. The results obtained suggested that induction of mature cell shapes onto stem cells can influence nucleus deformation of the stem cells followed by regulation of target genes. This might pave the way for a reliable, efficient, and cheap approach of controlling stem cell differentiation toward skin cells for wound healing applications.
The optical Kerr nonlinearity of plasmonic metals provides enticing prospects for developing reconfigurable and ultracompact all-optical modulators. In nanostructured metals, the coherent coupling of light energy to plasmon resonances creates a nonequilibrium electron distribution at an elevated electron temperature that gives rise to significant Kerr optical nonlinearities. Although enhanced nonlinear responses of metals facilitate the realization of efficient modulation devices, the intrinsically slow relaxation dynamics of the photoexcited carriers, primarily governed by electron-phonon interactions, impedes ultrafast all-optical modulation. Here, femtosecond (≈190 fs) all-optical modulation in plasmonic systems via the activation of relaxation pathways for hot electrons at the interface of metals and electron acceptor materials, following an on-resonance excitation of subradiant lattice plasmon modes, is demonstrated. Both the relaxation kinetics and the optical nonlinearity can be actively tuned by leveraging the spectral response of the plasmonic design in the linear regime. The findings offer an opportunity to exploit hot-electron-induced nonlinearities for design of self-contained, ultrafast, and low-power all-optical modulators based on plasmonic platforms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.