Drones, unmanned aerial vehicles (UAVs), or unmanned aerial systems (UAS) are expected to be an important component of 5G/beyond 5G (B5G) communications. This includes their use within cellular architectures (5G UAVs), in which they can facilitate both wireless broadcast and point-topoint transmissions, usually using small UAS (sUAS). Allowing UAS to operate within airspace along with commercial, cargo, and other piloted aircraft will likely require dedicated and protected aviation spectrum-at least in the near term, while regulatory authorities adapt to their use. The command and control (C2), or control and non-payload communications (CNPC) link provides safety critical information for the control of the UAV both in terrestrial-based line of sight (LOS) conditions and in satellite communication links for so-called beyond LOS (BLOS) conditions. In this paper, we provide an overview of these CNPC links as they may be used in 5G and satellite systems by describing basic concepts and challenges. We review new entrant technologies that might be used for UAV C2 as well as for payload communication, such as millimeter wave (mmWave) systems, and also review navigation and surveillance challenges. A brief discussion of UAV-to-UAV communication and hardware issues are also provided.
The paper proposes a geometrical-statistical modeling approach for the air-ground channel for communications, navigation, and surveillance (CNS) systems in the L-band frequency range. We sketch the architecture of the model with its six elements and show how their parameters can be derived from measurement data. Preliminary results obtained from a relatively small set of measurement data reveal that the proposed modeling approach is well suited to capture the time variant behavior of the channel. However, a considerably more extensive evaluation of the measurement data will be necessary to finalize the parameter settings of the proposed channel model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.