Background/Aims: Nonalcoholic fatty liver disease (NAFLD) is closely related to gut-microbiome. There is a paucity of research on which strains of gut microbiota affect the progression of NAFLD. This study explored the NAFLD-associated microbiome in humans and the role of <i>Lactobacillus</i> in the progression of NAFLD in mice.Methods: The gut microbiome was analyzed via next-generation sequencing in healthy people (n=37) and NAFLD patients with elevated liver enzymes (n=57). Six-week-old male C57BL/6J mice were separated into six groups (n=10 per group; normal, Western, and four Western diet + strains [10<sup>9</sup> colony-forming units/g for 8 weeks; <i>L. acidophilus</i>, <i>L. fermentum</i>, <i>L. paracasei</i>, and <i>L. plantarum</i>]). Liver/body weight ratio, liver pathology, serum analysis, and metagenomics in the mice were examined.Results: Compared to healthy subjects (1.6±4.3), NAFLD patients showed an elevated <i>Firmicutes/Bacteroidetes</i> ratio (25.0±29.0) and a reduced composition of Akkermansia and L. murinus (<i>P</i><0.05). In the animal experiment, L. acidophilus group was associated with a significant reduction in liver/body weight ratio (5.5±0.4) compared to the Western group (6.2±0.6) (<i>P</i><0.05). <i>L. acidophilus</i> (41.0±8.6), <i>L. fermentum</i> (44.3±12.6), and <i>L. plantarum</i> (39.0±7.6) groups showed decreased cholesterol levels compared to the Western group (85.7±8.6) (<i>P</i><0.05). In comparison of steatosis, <i>L. acidophilus</i> (1.9±0.6), <i>L. plantarum</i> (2.4±0.7), and <i>L. paracasei</i> (2.0±0.9) groups showed significant improvement of steatosis compared to the Western group (2.6±0.5) (<i>P</i><0.05).Conclusions: Ingestion of <i>Lactobacillus</i>, such as <i>L. acidophilus</i>, <i>L. fermentum</i>, and <i>L. plantarum</i>, ameliorates the progression of nonalcoholic steatosis by lowering cholesterol. The use of <i>Lactobacillus</i> can be considered as a useful strategy for the treatment of NAFLD.
Chronic liver disease, one of the most common diseases, typically arises from nonalcoholic fatty liver disease, alcoholic liver disease, chronic viral hepatitis, or hepatocellular carcinoma. Therefore, there is a pressing need for improved treatment strategies. Korean Red Ginseng has been known to have positive effects on liver disease and liver function. In this paper, we summarize the current knowledge on the beneficial effects of Korean Red Ginseng on chronic liver disease, a condition encompassing nonalcoholic fatty liver disease, alcoholic liver disease, chronic viral hepatitis, and hepatocellular carcinoma, as supported by experimental evaluation and clinical investigation.
Background Although microbioa‐based therapies have shown putative effects on the treatment of non‐alcoholic fatty liver disease (NAFLD), it is not clear how microbiota‐derived metabolites contribute to the prevention of NAFLD. We explored the metabolomic signature of Lactobacillus lactis and Pediococcus pentosaceus in NAFLD mice and its association in NAFLD patients. Methods We used Western diet‐induced NAFLD mice, and L. lactis and P. pentosaceus were administered to animals in the drinking water at a concentration of 10 9 CFU/g for 8 weeks. NAFLD severity was determined based on liver/body weight, pathology and biochemistry markers. Caecal samples were collected for the metagenomics by 16S rRNA sequencing. Metabolite profiles were obtained from caecum, liver and serum. Human stool samples (healthy control [ n = 22] and NAFLD patients [ n = 23]) were collected to investigate clinical reproducibility for microbiota‐derived metabolites signature and metabolomics biomarker. Results L. lactis and P. pentosaceus supplementation effectively normalized weight ratio, NAFLD activity score, biochemical markers, cytokines and gut‐tight junction. While faecal microbiota varied according to the different treatments, key metabolic features including short chain fatty acids (SCFAs), bile acids (BAs) and tryptophan metabolites were analogously restored by both probiotic supplementations. The protective effects of indole compounds were validated with in vitro and in vivo models, including anti‐inflammatory effects. The metabolomic signatures were replicated in NAFLD patients, accompanied by the comparable levels of Firmicutes / Bacteroidetes ratio, which was significantly higher (4.3) compared with control (0.6). Besides, the consequent biomarker panel with six stool metabolites (indole, BAs, and SCFAs) showed 0.922 (area under the curve) in the diagnosis of NAFLD. Conclusions NAFLD progression was robustly associated with metabolic dys‐regulations in the SCFAs, bile acid and indole compounds, and NAFLD can be accurately diagnosed using the metabolites. L. lactis and P. pentosaceus ameliorate NAFLD progression by modulating gut metagenomic and metabolic environment, particularly tryptophan pathway, of the gut‐liver axis.
Gut microbiota plays a key role in the pathogenesis of alcoholic liver disease (ALD). Consumption of alcohol leads to increased gut permeability, small intestinal bacterial overgrowth, and enteric dysbiosis. These factors contribute to the increased translocation of microbial products to the liver via the portal tract. Subsequently, bacterial endotoxins such as lipopolysaccharide, in association with the Toll-like receptor 4 signaling pathway, induce a gamut of damaging immune responses in the hepatic milieu. Because of the close association between deleterious inflammation and ALD-induced microbiota imbalance, therapeutic approaches that seek to reestablish gut homeostasis should be considered in the treatment of alcoholic patients. To this end, a number of preliminary studies on probiotics have confirmed their effectiveness in suppressing proinflammatory cytokines and improving liver function in the context of ALD. In addition, there have been few studies linking the administration of prebiotics and antibiotics with reduction of alcohol-induced liver damage. Because these preliminary results are promising, large-scale randomized studies are warranted to elucidate the impact of these microbiota-based treatments on the gut flora and associated immune responses, in addition to exploring questions about optimal delivery. Finally, fecal microbiota transplant has been shown to be an effective method of modulating gut microbiota and deserve further investigation as a potential therapeutic option for ALD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.