Word sense disambiguation (WSD) is a fundamental natural language processing task. Unsupervised knowledge-based WSD only relies on a lexical knowledge base as the sense inventory and has wider practical use than supervised WSD that requires a mass of sense-annotated data. HowNet is the most widely used lexical knowledge base in Chinese WSD. Because of its uniqueness, however, most of existing unsupervised WSD methods cannot work for HowNetbased WSD, and the tailor-made methods have not obtained satisfying results. In this paper, we propose a new unsupervised method for HowNet-based Chinese WSD, which exploits the masked language model task of pre-trained language models. In experiments, considering existing evaluation dataset is small and out-of-date, we build a new and larger HowNet-based WSD dataset. Experimental results demonstrate that our model achieves significantly better performance than all the baseline methods. All the code and data of this paper are available at https://github.com/thunlp/SememeWSD.
Textual adversarial attacking has received wide and increasing attention in recent years. Various attack models have been proposed, which are enormously distinct and implemented with different programming frameworks and settings. These facts hinder quick utilization and fair comparison of attack models. In this paper, we present an opensource textual adversarial attack toolkit named OpenAttack to solve these issues. Compared with existing other textual adversarial attack toolkits, OpenAttack has its unique strengths in support for all attack types, multilinguality, and parallel processing. Currently, OpenAttack includes 15 typical attack models that cover all attack types. Its highly inclusive modular design not only supports quick utilization of existing attack models, but also enables great flexibility and extensibility. OpenAttack has broad uses including comparing and evaluating attack models, measuring robustness of a model, assisting in developing new attack models, and adversarial training. Source code and documentation can be obtained at https://github.com/thunlp/ OpenAttack.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.