No abstract
Natural language questions are inherently compositional, and many are most easily answered by reasoning about their decomposition into modular sub-problems. For example, to answer "is there an equal number of balls and boxes?" we can look for balls, look for boxes, count them, and compare the results. The recently proposed Neural Module Network (NMN) architecture [3,2] implements this approach to question answering by parsing questions into linguistic substructures and assembling question-specific deep networks from smaller modules that each solve one subtask. However, existing NMN implementations rely on brittle off-the-shelf parsers, and are restricted to the module configurations proposed by these parsers rather than learning them from data. In this paper, we propose End-to-End Module Networks (N2NMNs), which learn to reason by directly predicting instance-specific network layouts without the aid of a parser. Our model learns to generate network structures (by imitating expert demonstrations) while simultaneously learning network parameters (using the downstream task loss). Experimental results on the new CLEVR dataset targeted at compositional question answering show that N2NMNs achieve an error reduction of nearly 50% relative to state-of-theart attentional approaches, while discovering interpretable network architectures specialized for each question.
People often refer to entities in an image in terms of their relationships with other entities. For example, the black cat sitting under the table refers to both a black cat entity and its relationship with another table entity. Understanding these relationships is essential for interpreting and grounding such natural language expressions. Most prior work focuses on either grounding entire referential expressions holistically to one region, or localizing relationships based on a fixed set of categories. In this paper we instead present a modular deep architecture capable of analyzing referential expressions into their component parts, identifying entities and relationships mentioned in the input expression and grounding them all in the scene. We call this approach Compositional Modular Networks (CMNs): a novel architecture that learns linguistic analysis and visual inference end-to-end. Our approach is built around two types of neural modules that inspect local regions and pairwise interactions between regions. We evaluate CMNs on multiple referential expression datasets, outperforming state-of-the-art approaches on all tasks.
We describe a question answering model that applies to both images and structured knowledge bases. The model uses natural language strings to automatically assemble neural networks from a collection of composable modules. Parameters for these modules are learned jointly with network-assembly parameters via reinforcement learning, with only (world, question, answer) triples as supervision. Our approach, which we term a dynamic neural module network, achieves state-of-theart results on benchmark datasets in both visual and structured domains.
In this work, we present a minimal neural model for constituency parsing based on independent scoring of labels and spans. We show that this model is not only compatible with classical dynamic programming techniques, but also admits a novel greedy top-down inference algorithm based on recursive partitioning of the input. We demonstrate empirically that both prediction schemes are competitive with recent work, and when combined with basic extensions to the scoring model are capable of achieving state-of-the-art single-model performance on the Penn Treebank (91.79 F1) and strong performance on the French Treebank (82.23 F1).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.