Abstract. Grounding (i.e. localizing) arbitrary, free-form textual phrases in visual content is a challenging problem with many applications for human-computer interaction and image-text reference resolution. Few datasets provide the ground truth spatial localization of phrases, thus it is desirable to learn from data with no or little grounding supervision. We propose a novel approach which learns grounding by reconstructing a given phrase using an attention mechanism, which can be either latent or optimized directly. During training our approach encodes the phrase using a recurrent network language model and then learns to attend to the relevant image region in order to reconstruct the input phrase. At test time, the correct attention, i.e., the grounding, is evaluated. If grounding supervision is available it can be directly applied via a loss over the attention mechanism. We demonstrate the effectiveness of our approach on the Flickr 30k Entities [35] and ReferItGame [26] datasets with different levels of supervision, ranging from no supervision over partial supervision to full supervision. Our supervised variant improves by a large margin over the state-of-the-art on both datasets.
In this paper, we address the task of natural language object retrieval, to localize a target object within a given image based on a natural language query of the object. Natural language object retrieval differs from text-based image retrieval task as it involves spatial information about objects within the scene and global scene context. To address this issue, we propose a novel Spatial Context Recurrent ConvNet (SCRC) model as scoring function on candidate boxes for object retrieval, integrating spatial configurations and global scene-level contextual information into the network. Our model processes query text, local image descriptors, spatial configurations and global context features through a recurrent network, outputs the probability of the query text conditioned on each candidate box as a score for the box, and can transfer visual-linguistic knowledge from image captioning domain to our task. Experimental results demonstrate that our method effectively utilizes both local and global information, outperforming previous baseline methods significantly on different datasets and scenarios, and can exploit large scale vision and language datasets for knowledge transfer.
Natural language questions are inherently compositional, and many are most easily answered by reasoning about their decomposition into modular sub-problems. For example, to answer "is there an equal number of balls and boxes?" we can look for balls, look for boxes, count them, and compare the results. The recently proposed Neural Module Network (NMN) architecture [3,2] implements this approach to question answering by parsing questions into linguistic substructures and assembling question-specific deep networks from smaller modules that each solve one subtask. However, existing NMN implementations rely on brittle off-the-shelf parsers, and are restricted to the module configurations proposed by these parsers rather than learning them from data. In this paper, we propose End-to-End Module Networks (N2NMNs), which learn to reason by directly predicting instance-specific network layouts without the aid of a parser. Our model learns to generate network structures (by imitating expert demonstrations) while simultaneously learning network parameters (using the downstream task loss). Experimental results on the new CLEVR dataset targeted at compositional question answering show that N2NMNs achieve an error reduction of nearly 50% relative to state-of-theart attentional approaches, while discovering interpretable network architectures specialized for each question.
People often refer to entities in an image in terms of their relationships with other entities. For example, the black cat sitting under the table refers to both a black cat entity and its relationship with another table entity. Understanding these relationships is essential for interpreting and grounding such natural language expressions. Most prior work focuses on either grounding entire referential expressions holistically to one region, or localizing relationships based on a fixed set of categories. In this paper we instead present a modular deep architecture capable of analyzing referential expressions into their component parts, identifying entities and relationships mentioned in the input expression and grounding them all in the scene. We call this approach Compositional Modular Networks (CMNs): a novel architecture that learns linguistic analysis and visual inference end-to-end. Our approach is built around two types of neural modules that inspect local regions and pairwise interactions between regions. We evaluate CMNs on multiple referential expression datasets, outperforming state-of-the-art approaches on all tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.