Advanced heart monitors, especially those enabled by the Internet of Health Things (IoHT), provide a great opportunity for continuous collection of the electrocardiogram (ECG), which contains rich information about underlying cardiac conditions. Realizing the full potential of IoHT-enabled cardiac monitoring hinges, to a great extent, on the detection of disease-induced anomalies from collected ECGs. However, challenges exist in the current literature for IoHT-based cardiac monitoring: (1) Most existing methods are based on supervised learning, which requires both normal and abnormal samples for training. This is impractical as it is generally unknown when and what kind of anomalies will occur during cardiac monitoring. (2) Furthermore, it is difficult to leverage advanced machine learning approaches for information processing of 1D ECG signals, as most of them are designed for 2D images and higher-dimensional data. To address these challenges, a new sensor-based unsupervised framework is developed for IoHT-based cardiac monitoring. First, a high-dimensional tensor is generated from the multi-channel ECG signals through the Gramian Angular Difference Field (GADF). Then, multi-linear principal component analysis (MPCA) is employed to unfold the ECG tensor and delineate the disease-altered patterns. Obtained principal components are used as features for anomaly detection using machine learning models (e.g., deep support vector data description (deep SVDD)) as well as statistical control charts (e.g., Hotelling T2 chart). The developed framework is evaluated and validated using real-world ECG datasets. Comparing to the state-of-the-art approaches, the developed framework with deep SVDD achieves superior performances in detecting abnormal ECG patterns induced by various types of cardiac disease, e.g., an F-score of 0.9771 is achieved for detecting atrial fibrillation, 0.9986 for detecting right bundle branch block, and 0.9550 for detecting ST-depression. Additionally, the developed framework with the T2 control chart facilitates personalized cycle-to-cycle monitoring with timely detected abnormal ECG patterns. The developed framework has a great potential to be implemented in IoHT-enabled cardiac monitoring and smart management of cardiac health.
Atrial fibrillation (AF) is a common cardiac arrhythmia and affects one to two percent of the population. In this work, we leverage the three-dimensional atrial endocardial unipolar/bipolar voltage map to predict the AF type and recurrence of AF in 1 year. This problem is challenging for two reasons: (1) the unipolar/bipolar voltages are collected at different locations on the endocardium and the shapes of the endocardium vary widely in different patients, and thus the unipolar/bipolar voltage maps need aligning to the same coordinate; (2) the collected dataset size is very limited. To address these issues, we exploit a pretrained 3D point cloud registration approach and finetune it on left atrial voltage maps to learn the geometric feature and align all voltage maps into the same coordinate. After alignment, we feed the unipolar/bipolar voltages from the registered points into a multilayer perceptron (MLP) classifier to predict whether patients have paroxysmal or persistent AF, and the risk of recurrence of AF in 1 year for patients in sinus rhythm. The experiment shows our method classifies the type and recurrence of AF effectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.