This paper proposes a novel framework for the segmentation of phonocardiogram (PCG) signals into heart states, exploiting the temporal evolution of the PCG as well as considering the salient information that it provides for the detection of the heart state. Methods: We propose the use of recurrent neural networks and exploit recent advancements in attention based learning to segment the PCG signal. This allows the network to identify the most salient aspects of the signal and disregard uninformative information. Results: The proposed method attains state-of-the-art performance on multiple benchmarks including both human and animal heart recordings. Furthermore, we empirically analyse different feature combinations including envelop features, wavelet and Mel Frequency Cepstral Coefficients (MFCC), and provide quantitative measurements that explore the importance of different features in the proposed approach. Conclusion: We demonstrate that a recurrent neural network coupled with attention mechanisms can effectively learn from irregular and noisy PCG recordings. Our analysis of different feature combinations shows that MFCC features and their derivatives offer the best performance compared to classical wavelet and envelop features. Significance: Heart sound segmentation is a crucial pre-processing step for many diagnostic applications. The proposed method provides a cost effective alternative to labour extensive manual segmentation, and provides a more accurate segmentation than existing methods. As such, it can improve the performance of further analysis including the detection of murmurs and ejection clicks. The proposed method is also applicable for detection and segmentation of other one dimensional biomedical signals.
Obstructive Sleep Apnea (OSA) is a highly prevalent disease in which upper airways are collapsed during sleep, leading to serious consequences. The standard method of OSA diagnosis is known as Polysomnography (PSG), which requires an overnight stay in a specifically equipped facility, connected to over 15 channels of measurements. PSG requires (i) contact instrumentation and, (ii) the expert human scoring of a vast amount of data based on subjective criteria. PSG is expensive, time consuming and is difficult to use in community screening or pediatric assessment. Snoring is the most common symptom of OSA. Despite the vast potential, however, it is not currently used in the clinical diagnosis of OSA. In this paper, we propose a novel method of snore signal analysis for the diagnosis of OSA. The method is based on a novel feature that quantifies the non-Gaussianity of individual episodes of snoring. The proposed method was evaluated using overnight clinical snore sound recordings of 86 subjects. The recordings were made concurrently with routine PSG, which was used to establish the ground truth via standard clinical diagnostic procedures. The results indicated that the developed method has a detectability accuracy of 97.34%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.