As humans we possess an intuitive ability for navigation which we master through years of practice; however existing approaches to model this trait for diverse tasks including monitoring pedestrian flow and detecting abnormal events have been limited by using a variety of hand-crafted features. Recent research in the area of deeplearning has demonstrated the power of learning features directly from the data; and related research in recurrent neural networks has shown exemplary results in sequenceto-sequence problems such as neural machine translation and neural image caption generation. Motivated by these approaches, we propose a novel method to predict the future motion of a pedestrian given a short history of their, and their neighbours, past behaviour. The novelty of the proposed method is the combined attention model which utilises both "soft attention" as well as "hard-wired" attention in order to map the trajectory information from the local neighbourhood to the future positions of the pedestrian of interest. We illustrate how a simple approximation of attention weights (i.e hard-wired) can be merged together with soft attention weights in order to make our model applicable for challenging real world scenarios with hundreds of neighbours. The navigational capability of the proposed method is tested on two challenging publicly available surveillance databases where our model outperforms the currentstate-of-the-art methods. Additionally, we illustrate how the proposed architecture can be directly applied for the task of abnormal event detection without handcrafting the features.
Effective wildlife management relies on the accurate and precise detection of individual animals. These can be challenging data to collect for many cryptic species, particularly those that live in complex structural environments. This study introduces a new automated method for detection using published object detection algorithms to detect their heat signatures in RPAS-derived thermal imaging. As an initial case study we used this new approach to detect koalas (
Phascolarctus cinereus
), and validated the approach using ground surveys of tracked radio-collared koalas in Petrie, Queensland. The automated method yielded a higher probability of detection (68–100%), higher precision (43–71%), lower root mean square error (RMSE), and lower mean absolute error (MAE) than manual assessment of the RPAS-derived thermal imagery in a comparable amount of time. This new approach allows for more reliable, less invasive detection of koalas in their natural habitat. This new detection methodology has great potential to inform and improve management decisions for threatened species, and other difficult to survey species.
In this paper we address the problem of human action recognition from video sequences. Inspired by the exemplary results obtained via automatic feature learning and deep learning approaches in computer vision, we focus our attention towards learning salient spatial features via a convolutional neural network (CNN) and then map their temporal relationship with the aid of Long-Short-Term-Memory (LSTM) networks. Our contribution in this paper is a deep fusion framework that more effectively exploits spatial features from CNNs with temporal features from LSTM models. We also extensively evaluate their strengths and weaknesses. We find that by combining both the sets of features, the fully connected features effectively act as an attention mechanism to direct the LSTM to interesting parts of the convolutional feature sequence. The significance of our fusion method is its simplicity and effectiveness compared to other state-of-the-art methods. The evaluation results demonstrate that this hierarchical multi stream fusion method has higher performance compared to single stream mapping methods allowing it to achieve high accuracy outperforming current state-of-the-art methods in three widely used databases: UCF11, UCFSports, jHMDB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.