Stochastic computing, which is based on probability, involves a trade-off between accuracy and power and is a promising solution for energy-efficiency in error-tolerance designs. In this paper, adder and multiplier circuits based on the proposed stochastic computing architecture are studied and analyzed. First, we propose an efficient yet simple stochastic computation technique for multipliers and adders by exchanging the wires used for their operation. The results demonstrate that the proposed design reduces the relative error in computation compared with the conventional designs and has smaller area compared to conventional designs. Then, a new energy-efficient and high-performance stochastic adder with acceptable error metrics is investigated. The proposed multiplier shows better error metrics than other existing stochastic multipliers, and significantly improves area utilization and power consumption compared to the exact binary multiplier. Finally, we apply the proposed stochastic architecture to an edge detection algorithm and achieve a significant reduction in area utilization (64%) and power consumption (96%). It is therefore demonstrated that the proposed stochastic architecture is suitable for energy-efficient hardware designs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.