Background The incidence rate of non-small cell lung cancer (NSCLC) has been increasing worldwide, and the correlation of circadian rhythm disruption with a raised risk of cancer and worse prognosis has been shown by accumulating evidences recently. On the other hand, drug resistance and the impact of tumor heterogeneity have been inevitable in NSCLC therapy. These both lead to an urgent need to identify more useful prognostic and predictive markers for NSCLC diagnosis and treatment, especially on the aspect of circadian clock genes. Methods The expression of the main clock genes in cancer was probed with TIMER and Oncomine databases. The prognostic value of key clock genes was probed systematically with the Kaplan–Meier estimate and Cox regression on samples from TCGA database. RT-qPCR was performed on patient tissue samples to further validate the results from databases. The functional enrichment analysis was performed using the “ClusterProfiler” R package, and the correlation of key clock genes with tumor mutation burden, immune checkpoint, and immune infiltration levels were also assessed using multiple algorithms including TIDE, TIMER2.0, and XCELL. Results TIMELESS was significantly upregulated in lung tissue of clinical lung cancer patients as well as TCGA and Oncomine databases, while RORA was downregulated. Multivariate Cox regression analysis indicated that TIMELESS (P = 0.004, HR = 1.21 [1.06, 1.38]) and RORA (P = 0.047, HR = 0.868 [0.755, 0.998]) has a significant correlation with overall survival in NSCLC. Genes related to TIMELESS were enriched in the cell cycle and immune system, and the function of RORA was mainly focused on oncogenic signaling pathways or glycosylation and protein activation. Also, TIMELESS was positively correlated with tumor mutation burden while RORA was negatively correlated with it. TIMELESS and RORA were also significantly correlated with immune checkpoint and immune infiltration levels in NSCLC. Additionally, TIMELESS showed a significant positive relationship with lipid metabolism. Conclusions TIMELESS and RORA were identified as key clock genes in NSCLC, and were independent prognostic factors for overall survival in NSCLC. The function of them were assessed in many aspects, indicating the strong potential of the two genes to serve as biomarkers for NSCLC progression and prognosis.
Background: Lung adenocarcinoma (LUAD) has high morbidity and is prone to recurrence. TIMELESS (TIM), which regulates circadian rhythms in Drosophila, is highly expressed in various tumors. Methods: We used tumor samples from patients with lung carcinoma and LUAD patient data from public databases to confirm the relationship of TIM expression with lung cancer. We used NSCLC cell lines and siRNA to knock down TIM expression, and further analyzed cell proliferation, migration and colony formation. By using western blot and qPCR, we detected the influence of TIM on EGFR, Sphk1 and AMPK. With proteomics analysis, we comprehensively inspected the different changed proteins influenced by TIM and did global bioinformatic analysis. Results: In this study, we found that TIM expression was elevated in LUAD and that this high expression was positively correlated with more advanced tumor pathological stages and shorter overall and disease-free survival. Moreover, gefitinib efficacy in patients with LUAD could be influenced by TIM expression, and the antitumor effect of gefitinib was significantly improved with TIM knockdown. TIM knockdown inhibited epidermal growth factor receptor (EGFR) activation and phosphorylation of its downstream AKT/mTOR and ERK1/2 pathways. We also clarified that TIM regulated the activation of sphingosine kinase 1 (SPHK1) in LUAD cells, while SPHK1 knockdown inhibited EGFR activation. Quantitative proteomics techniques combined with bioinformatics analysis were adopted to clarify the global molecular mechanisms regulated by TIM in LUAD. The results of proteomics suggested that mitochondrial translation elongation and termination were altered, which were closely related to the process of mitochondrial oxidative phosphorylation. Knockdown of TIM reduced the ATP content and promoted AMP-activated protein kinase (AMPK) activation. Conclusions: Our study revealed that TIM could regulate EGFR activation through AMPK and SPHK1, as well as influence mitochondrial function and alter the ATP level; thus, TIM is a key factor in LUAD.
Cydonia oblonga Miller (C. oblonga) is known for its beneficial properties for health since ancient times. C. oblonga has also been shown to possess antihemolytic, antidiabetic, and antilipoperoxidation, as well as lipid-lowering properties. Modern research has shown that C. oblonga also possess antitumor effects. However, studies have not reported whether its main compounds inhibit renal cell carcinoma (RCC) development and progression. We found the inhibitory effect of total flavone of C. oblonga (TFCOM) in RCC cells through in vitro screening tests. The molecular mechanism of this effect is still unknown. Therefore, molecular docking combined with network pharmacological methods was used in order to clarify the molecular mechanisms of TFCOM anticancer effects. TFCOM showed potent inhibitory effects on the proliferation and migration of 786-O and Renca cells. Hoechst 33342 staining test results indicated that TFCOM’s cell growth inhibition in RCC cells may be mediated through apoptosis. It may significantly influence S1PR2/FAK, WNT/β-catenin, and PI3K/AKT/mTOR signaling pathways that can regulate a series of cellular activities and can participate in the processes of cell proliferation, migration, and apoptosis. We conclude that TFCOM has antitumor activity against kidney cancer. It may induce apoptosis and inhibitory effects on cell proliferation and migration through S1PR2/FAK, WNT/β-catenin, and PI3K/AKT/mTOR signal pathways. TFCOM might be a potential anticancer drug to be further developed for human kidney cancer therapy. In recent years, many synthetic drugs with anticancer effects have the disadvantages of high price and side effects. Thus, the development of anticancer drugs from natural resources has its application value. Our results suggest that TFCOM, as a natural product, has multiple target effects, and it may act through proteins and receptors such as FAK and S1PR2, thereby affecting the activation of downstream proteins and inhibiting the occurrence and development of renal cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.