Brown cotton fiber is the major raw material for colored cotton industry. Previous studies have showed that the brown pigments in cotton fiber belong to proanthocyanidins (PAs). To clarify the details of PA biosynthesis pathway in brown cotton fiber, gene expression profiles in developing brown and white fibers were compared via digital gene expression profiling and qRT-PCR. Compared to white cotton fiber, all steps from phenylalanine to PA monomers (flavan-3-ols) were significantly up-regulated in brown fiber. Liquid chromatography mass spectrometry analyses showed that most of free flavan-3-ols in brown fiber were in 2, 3-trans form (gallocatechin and catechin), and the main units of polymeric PAs were trihydroxylated on B ring. Consistent with monomeric composition, the transcript levels of flavonoid 3′, 5′-hydroxylase and leucoanthocyanidin reductase in cotton fiber were much higher than their competing enzymes acting on the same substrates (dihydroflavonol 4-reductase and anthocyanidin synthase, respectively). Taken together, our data revealed a detailed PA biosynthesis pathway wholly activated in brown cotton fiber, and demonstrated that flavonoid 3′, 5′-hydroxylase and leucoanthocyanidin reductase represented the primary flow of PA biosynthesis in cotton fiber.
SummaryBrown cotton fibres are the most widely used naturally coloured raw materials for the eco‐friendly textile industry. Previous studies have indicated that brown fibre pigments belong to proanthocyanidins (PAs) or their derivatives, and fibre coloration is negatively associated with cotton productivity and fibre quality. To date, the molecular basis controlling the biosynthesis and accumulation of brown pigments in cotton fibres is largely unknown. In this study, based on expressional and transgenic analyses of cotton homologs of Arabidopsis PA regulator TRANSPARENT TESTA 2 (TT2) and fine‐mapping of the cotton dark‐brown fibre gene (Lc1), we show that a TT2 homolog, GhTT2‐3A, controls PA biosynthesis and brown pigmentation in cotton fibres. We observed that GhTT2‐3A activated GhbHLH130D, a homolog of Arabidopsis TT8, which in turn synergistically acted with GhTT2‐3A to activate downstream PA structural genes and PA synthesis and accumulation in cotton fibres. Furthermore, the up‐regulation of GhTT2‐3A in fibres at the secondary wall‐thickening stage resulted in brown mature fibres, and fibre quality and lint percentage were comparable to that of the white‐fibre control. The findings of this study reveal the regulatory mechanism controlling brown pigmentation in cotton fibres and demonstrate a promising biotechnological strategy to break the negative linkage between coloration and fibre quality and/or productivity.
Basic/helix-loop-helix (bHLH) proteins comprise one of the largest transcription factor families and play important roles in diverse cellular and molecular processes. Comprehensive analyses of the composition and evolution of the bHLH family in cotton are essential to elucidate their functions and the molecular basis of cotton development. By searching bHLH homologous genes in sequenced diploid cotton genomes (Gossypium raimondii and G. arboreum), a set of cotton bHLH reference genes containing 289 paralogs were identified and named as GobHLH001-289. Based on their phylogenetic relationships, these cotton bHLH proteins were clustered into 27 subfamilies. Compared to those in Arabidopsis and cacao, cotton bHLH proteins generally increased in number, but unevenly in different subfamilies. To further uncover evolutionary changes of bHLH genes during tetraploidization of cotton, all genes of S5a and S5b subfamilies in upland cotton and its diploid progenitors were cloned and compared, and their transcript profiles were determined in upland cotton. A total of 10 genes of S5a and S5b subfamilies (doubled from A- and D-genome progenitors) maintained in tetraploid cottons. The major sequence changes in upland cotton included a 15-bp in-frame deletion in GhbHLH130D and a long terminal repeat retrotransposon inserted in GhbHLH062A, which eliminated GhbHLH062A expression in various tissues. The S5a and S5b bHLH genes of A and D genomes (except GobHLH062) showed similar transcription patterns in various tissues including roots, stems, leaves, petals, ovules, and fibers, while the A- and D-genome genes of GobHLH110 and GobHLH130 displayed clearly different transcript profiles during fiber development. In total, this study represented a genome-wide analysis of cotton bHLH family, and revealed significant changes in sequence and expression of these genes in tetraploid cottons, which paved the way for further functional analyses of bHLH genes in the cotton genus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.