Abstract:A microgrid with an advanced energy management approach is a feasible solution for accommodating the development of distributed generators (DGs) and electric vehicles (EVs). At the primary stage of development, the total number of EVs in a microgrid is fairly small but increases promptly. Thus, it makes most prediction models for EV charging demand difficult to apply at present. To overcome the inadaptability, a novel robust approach is proposed to handle EV charging demand predictions along with demand-side management (DSM) on the condition of satisfying each EV user's demand. Variables with stochastic forecast models join the objective function in the form of probability-constrained scenarios. This paper proposes a scenario-based model predictive control (MPC) approach combining both robust and stochastic models to minimize the total operational cost for energy management. To overcome the concern about the convergence time increasing from the combination of scenarios, the Benders decomposition (BD) technique is further adopted to improve computational efficiency. Simulation results on a combined heat and power microgrid indicate that the proposed scenario-based MPC approach achieves a better economic performance than a traditional deterministic MPC (DMPC) approach, while ensuring EV charging demands, as well as minimizing the trade-off between optimal solutions and computing times.
Software Defined Networking (SDN) centrally manages the network data layer to improve the programmability and flexibility of networks by the controller. Because of centralized control, SDN is vulnerable to Distributed Denial of Service (DDoS) attacks. In order to protect the security of SDN, a method based on K-means++ and Fast K-Nearest Neighbors (K-FKNN) is proposed for DDoS detection in SDN, and the modular detection system is presented in the controller. The detailed experiments are conducted to evaluate the system performance. The results of the experiments show that K-FKNN improves the detection accuracy and efficiency of K-Nearest Neighbors (KNN), and has high precision and stability of DDoS detection in SDN. INDEX TERMS Software defined networks, network security, DDoS detection, K-nearest neighbors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.