Abstract-Combinatorial optimization problems are those problems that have a finite set of possible solutions. The best way to solve a combinatorial optimization problem is to check all the feasible solutions in the search space. However, checking all the feasible solutions is not always possible, especially when the search space is large. Thus, many meta-heuristic algorithms have been devised and modified to solve these problems. The meta-heuristic approaches are not guaranteed to find the optimal solution since they evaluate only a subset of the feasible solutions, but they try to explore different areas in the search space in a smart way to get a near-optimal solution in less cost and time. In this paper, we propose a new meta-heuristic algorithm that can be used for solving combinatorial optimization problems. The method introduced in this paper is named the Global Neighborhood Algorithm (GNA). The algorithm is principally based on a balance between both the global and local search. A set of random solutions are first generated from the global search space, and then the best solution will give the optimal value. After that, the algorithm will iterate, and in each iteration there will be two sets of generated solutions; one from the global search space and the other set of solutions will be generated from the neighborhood of the best solution. Throughout the paper, the algorithm will be delineated with examples. In the final phase of the research, the results of GNA will be discussed and compared with the results of Genetic Algorithm (GA) as an example of another optimization method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.