Silicon nanowire and nanopore arrays promise to reduce manufacturing costs and increase the power conversion efficiency of photovoltaic devices. So far, however, photovoltaic cells based on nanostructured silicon exhibit lower power conversion efficiencies than conventional cells due to the enhanced photocarrier recombination associated with the nanostructures. Here, we identify and separately measure surface recombination and Auger recombination in wafer-based nanostructured silicon solar cells. By identifying the regimes of junction doping concentration in which each mechanism dominates, we were able to design and fabricate an independently confirmed 18.2%-efficient nanostructured 'black-silicon' cell that does not need the antireflection coating layer(s) normally required to reach a comparable performance level. Our results suggest design rules for efficient high-surface-area solar cells with nano- and microstructured semiconductor absorbers.
We fabricate and measure graded-index “black silicon” surfaces and find the underlying scaling law governing reflectance. Wet etching (100) silicon in HAuCl4, HF, and H2O2 produces Au nanoparticles that catalyze formation of a network of [100]-oriented nanopores. This network grades the near-surface optical constants and reduces reflectance to below 2% at wavelengths from 300 to 1000 nm. As the density-grade depth increases, reflectance decreases exponentially with a characteristic grade depth of about 1/8 the vacuum wavelength or half the wavelength in Si. Observation of Au nanoparticles at the ends of cylindrical nanopores confirms local catalytic action of moving Au nanoparticles.
We have recently demonstrated that the Meyer-Neldel {MN) rule {compensation law) may be understood as arising naturally when the activation energy for a process is significantly larger than both the typical excitations available and kT. This conclusion was supported by the results of two microscopic models, related to special cases. In the present paper we present arguments, based on general results from statistical physics, which lead to the same conclusion. We show that this simple explanation also leads to the solution of a number of puzzles which have been associated with Meyer-Neldel behavior. W'e show that phenomena in groups of similar materials yield similar MN slopes, Finally, we show that the values of the slope for semiconductors with gaps in the 1 -2-eV range are consistent with the suggestion that optical phonons are the source of the excitation energy in such processes.
We study optical effects and factors limiting performance of our confirmed 16.8% efficiency “black silicon” solar cells. The cells incorporate density-graded nanoporous surface layers made by a one-step nanoparticle-catalyzed etch and reflect less than 3% of the solar spectrum, with no conventional antireflection coating. The cells are limited by recombination in the nanoporous layer which decreases short-wavelength spectral response. The optimum density-graded layer depth is then a compromise between reflectance reduction and recombination loss. Finally, we propose universal design rules for high-efficiency solar cells based on density-graded surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.