Autism is a neurodevelopmental disorder characterized by impairments in reciprocal social interaction, deficits in verbal and nonverbal communication, and a restricted repertoire of activities or interests. We performed a magnetic resonance imaging study to better define the neuropathology of autistic spectrum disorders. Here we report findings on the amygdala and the hippocampal formation. Borders of the amygdala, hippocampus, and cerebrum were defined, and their volumes were measured in male children (7.5-18.5 years of age) in four diagnostic groups: autism with mental retardation, autism without mental retardation, Asperger syndrome, and age-matched typically developing controls. Although there were no differences between groups in terms of total cerebral volume, children with autism (7.5-12.5 years of age) had larger right and left amygdala volumes than control children. There were no differences in amygdala volume between the adolescent groups (12.75-18.5 years of age). Interestingly, the amygdala in typically developing children increases substantially in volume from 7.5 to 18.5 years of age. Thus, the amygdala in children with autism is initially larger, but does not undergo the age-related increase observed in typically developing children. Children with autism, with and without mental retardation, also had a larger right hippocampal volume than typically developing controls, even after controlling for total cerebral volume. Children with autism but without mental retardation also had a larger left hippocampal volume relative to controls. These cross-sectional findings indicate an abnormal program of early amygdala development in autism and an abnormal pattern of hippocampal development that persists through adolescence. The cause of amygdala and hippocampal abnormalities in autism is currently unknown.
Developmental studies have shown that visuo-spatial working memory (VSWM) performance improves throughout childhood and adolescence into young adulthood. The neural basis of this protracted development is poorly understood. In this study, we used functional MRI (fMRI) to examine VSWM function in children, adolescents, and young adults, ages 7-22. Subjects performed a 2-back VSWM experiment that required dynamic storage and manipulation of spatial information. Accuracy and response latency on the VSWM task improved gradually, extending into young adulthood. Age-related increases in brain activation were observed in focal regions of the left and right dorsolateral prefrontal cortex, left ventrolateral prefrontal cortex (including Broca's area), left premotor cortex, and left and right posterior parietal cortex. Multiple regression analysis was used to examine the relative contributions of age, accuracy, and response latency on activation. Our analysis showed that age was the most significant predictor of activation in these brain regions. These findings provide strong evidence for a process of protracted functional maturation of bilateral fronto-parietal neural networks involved in VSWM development. At least two neural systems involved in VSWM mature together: (i) a right hemisphere visuo-spatial attentional system, and (ii) a left hemisphere phonological storage and rehearsal system. These observations suggest that visually and verbally mediated mnemonic processes, and their neural representations, develop concurrently during childhood and adolescence and into young adulthood.T he ability to represent and manipulate visuo-spatial information is a key requirement of everyday cognition (1). Visuo-spatial working memory (VSWM), the ability to briefly maintain and manipulate spatial information on line, plays an important role in this process (2). Developmental studies have shown that working memory (WM) performance improves with age throughout childhood and adolescence, into young adulthood (3-6). Zald et al. (3) have shown that spatial WM abilities improve substantially from age 14 to 20, with significant improvements in accuracy and reaction time (RT). The neural bases of these protracted changes are poorly understood. Here, we present the first study to examine the developmental trajectory of concurrent changes in brain function and behavior during the acquisition of VSWM skills in subjects from early childhood to young adulthood (ages 7-22).Extensive neuroimaging research in adults has shown that several prefrontal and parietal brain regions, including the dorsolateral prefrontal cortex (DLPFC), ventro-lateral prefrontal cortex (VLPFC), premotor cortex (PMC), and the posterior parietal cortex (PPC), play critical and differential roles in VSWM (7-10). In contrast, there have been very few brain imaging studies of WM in children and adolescents. Thomas et al. (11) Although these studies show that similar brain regions are activated during WM in children and adults, there is no quantitative information availab...
Williams syndrome (WS) is a neurogenetic-neurodevelopmental disorder characterized by a highly variable and enigmatic profile of cognitive and behavioral features. Relative to overall intellect, affected individuals demonstrate disproportionately severe visual-spatial deficits and enhanced emotionality and face processing. In this study, high-resolution magnetic resonance imaging data were collected from 43 individuals with WS and 40 age-and gender-matched healthy controls. Given the distinct cognitive-behavioral dissociations associated with this disorder, we hypothesized that neuroanatomical integrity in WS would be diminished most in regions comprising the visual-spatial system and most "preserved" or even augmented in regions involved in emotion and face processing. Both volumetric analysis and voxel-based morphometry were used to provide convergent approaches for detecting the hypothesized WS neuroanatomical profile. After adjusting for overall brain volume, participants with WS showed reduced thalamic and occipital lobe gray matter volumes and reduced gray matter density in subcortical and cortical regions comprising the human visual-spatial system compared with controls. The WS group also showed disproportionate increases in volume and gray matter density in several areas known to participate in emotion and face processing, including the amygdala, orbital and medial prefrontal cortices, anterior cingulate, insular cortex, and superior temporal gyrus. These findings point to specific neuroanatomical correlates for the unique topography of cognitive and behavioral features associated with this disorder.
Although schizophrenia is strongly hereditary, there are limited data regarding biological risk factors and pathophysiological processes. In this longitudinal study of adolescents with 22q11.2 deletion syndrome, we identified the catechol-O-methyltransferase low-activity allele (COMT(L)) as a risk factor for decline in prefrontal cortical volume and cognition, as well as for the consequent development of psychotic symptoms during adolescence. The 22q11.2 deletion syndrome is a promising model for identifying biomarkers related to the development of schizophrenia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.