Maturation of brain white matter pathways is an important factor in cognitive, behavioral, emotional and motor development during childhood and adolescence. In this study, we investigate white matter maturation as reflected by changes in anisotropy and white matter density with age. Thirty-four children and adolescents aged 6-19 years received diffusion-weighted magnetic resonance imaging scans. Among these, 30 children and adolescents also received high-resolution T1-weighed anatomical scans. A linear regression model was used to correlate fractional anisotropy (FA) values with age on a voxel-by-voxel basis. Within the regions that showed significant FA changes with age, a post hoc analysis was performed to investigate white matter density changes. With increasing age, FA values increased in prefrontal regions, in the internal capsule as well as in basal ganglia and thalamic pathways, the ventral visual pathways, and the corpus callosum. The posterior limb of the internal capsule, intrathalamic connections, and the corpus callosum showed the most significant overlaps between white matter density and FA changes with age. This study demonstrates that during childhood and adolescence, white matter anisotropy changes in brain regions that are important for attention, motor skills, cognitive ability, and memory. This typical developmental trajectory may be altered in individuals with disorders of development, cognition and behavior.
We used diffusion tensor imaging to examine white matter integrity in the dorsal and ventral streams among individuals with Williams syndrome (WS) compared with two control groups (typically developing and developmentally delayed) and using three separate analysis methods (whole brain, region of interest, and fiber tractography). All analysis methods consistently showed that fractional anisotropy (FA; a measure of microstructural integrity) was higher in the right superior longitudinal fasciculus (SLF) in WS compared with both control groups. There was a significant association with deficits in visuospatial construction and higher FA in WS individuals. Comparable increases in FA across analytic methods were not observed in the left SLF or the bilateral inferior longitudinal fasciculus in WS subjects. Together, these findings suggest a specific role of right SLF abnormality in visuospatial construction deficits in WS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.