The purpose of our study was to evaluate the effect of photodynamic therapy (PDT), using erythrosine as a photosensitizing agent and a dental halogen curing unit as a light source, on Streptococcus mutans in a biofilm phase. The S. mutans biofilms were formed in a 24-well cell culture cluster. Test groups consisted of biofilms divided into four groups: group 1: no photosensitizer or light irradiation treatment (control group); group 2: photosensitizer treatment alone; group 3: light irradiation alone; group 4: photosensitizer treatment and light irradiation. After treatments, the numbers of colony-forming unit (CFU) were counted and samples were examined by confocal laser scanning fluorescence microscopy (CLSM). Only group 4 (combined treatment) resulted in significant increases in cell death, with rates of 75% and 55% after 8 h of incubation, and 74% and 42% at 12 h, for biofilms formed in brain–heart infusion (BHI) broth supplemented with 0% or 0.1% sucrose, respectively. Therefore, PDT of S. mutans biofilms using a combination of erythrosine and a dental halogen curing unit, both widely used in dental clinics, resulted in a significant increase in cell death. The PDT effects are decreased in biofilms that form in the presence of sucrose.
The antimicrobial activity of isothiocyanates (ITCs) extracted from horseradish root was investigated against oral microorganisms: 6 strains of facultative anaerobic bacteria, Streptococcus mutans, Streptococcus sobrinus, Lactobacillus casei, Staphylococcus aureus, Enterococcus faecalis and Aggregatibacter actinomycetemcomitans; one strain of yeast, Candida albicans, and 3 strains of anaerobic bacteria, Fusobacterium nucleatum, Prevotella nigrescens, and Clostridium perfringens. The ITCs extracted from horseradish root showed antimicrobial activity against all oral microorganisms by the paper disk method. The minimum bactericidal concentration (MBC) of the ITCs extracted from horseradish root ranged from 1.25 to 5.00 mg/ml against 6 strains of facultative anaerobic bacteria and one strain of yeast, and 4.17 to 16.67 mg/ml against 3 strains of anaerobic bacteria. The ITCs extracted from horseradish root showed the strongest antimicrobial activity, with a MBC of 1.25 mg/ml, against C. albicans among facultative microorganisms, and 4.17 mg/ml against F. nucleatum among anaerobic bacteria. These results suggest that the ITCs extracted from horseradish root may be a candidate for use as an antimicrobial agent against oral microorganisms.
To evaluate the effect of various polishing points on surface roughness of pediatric zirconia crowns and to correlate findings with bacterial adhesion. Zirconia discs (n=40) were fabricated and divided into five groups according to point type used to roughen and polish: I (negative control [not roughened]); II (positive control [roughened]); and III-V, representing three commercially available point brands. Atomic force and scanning electron microscopy were used to assess surface roughness. The number of colony forming units were counted after biofilm formation. A statistically significant difference was found in surface roughness and bacterial adhesion between the positive control and the other four groups, with no difference between negative control and the three point groups. Surface roughness and bacterial adhesion were significantly and positively correlated. Surface roughness and bacterial adhesion in pediatric zirconia crowns were not significantly different from other materials regardless of polishing system.
The purpose of this study was to evaluate the effects of Photochemotherapy using a combination of erythrosine and standard halogen dental curing lights on the viability of Streptococcus mutans in the biofilm phase. To investigate the optimum treatment parameters, the researchers controlled the concentration of erythrosine, light irradiation time and the treatment time of erythrosine. The higher concentration of erythrosine (0, 10, 20, 40, 80 M) in the presence of light irradiation created greater effects in reducing the viability of S. mutans. The results showed a statistically significant difference among the antimicrobial effects in 20, 40, 80 M erythrosine. The higher irradiation time of light (0, 5, 15, 30, 60, 75s) in the presence of erythrosine showed greater effects in reducing the viability of S. mutans. There was statistically significant difference in 30, 60, 75 seconds. The higher treatment time of erythrosine (0, 1, 2.5, 5min) in the presence of erythrosine created greater effects on reduction of S. mutans viability. Statistically significant differences were found between 2.5 and 5 minutes of erythrosine treatment time. The results of this study showed that the photochemotherapy on S. mutans using erythrosine and the halogen dental curing lights conventionally used in dental clinics is effective in the condition of 20-40 M erythrosine concentration, irradiation time over 30 seconds, and erythrosine treatment time over 2.5 minutes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.