Mitochondrial function is an important determinant of the ageing process; however, the mitochondrial properties that enable longevity are not well understood. Here we show that optimal assembly of mitochondrial complex I predicts longevity in mice. Using an unbiased high-coverage high-confidence approach, we demonstrate that electron transport chain proteins, especially the matrix arm subunits of complex I, are decreased in young long-living mice, which is associated with improved complex I assembly, higher complex I-linked state 3 oxygen consumption rates and decreased superoxide production, whereas the opposite is seen in old mice. Disruption of complex I assembly reduces oxidative metabolism with concomitant increase in mitochondrial superoxide production. This is rescued by knockdown of the mitochondrial chaperone, prohibitin. Disrupted complex I assembly causes premature senescence in primary cells. We propose that lower abundance of free catalytic complex I components supports complex I assembly, efficacy of substrate utilization and minimal ROS production, enabling enhanced longevity.
We study the phylogeny of the placental mammals using molecular data from all mitochondrial tRNAs and rRNAs of 54 species. We use probabilistic substitution models specific to evolution in base paired regions of RNA. A number of these models have been implemented in a new phylogenetic inference software package for carrying out maximum likelihood and Bayesian phylogenetic inferences. We describe our Bayesian phylogenetic method which uses a Markov chain Monte Carlo algorithm to provide samples from the posterior distribution of tree topologies. Our results show support for four primary mammalian clades, in agreement with recent studies of much larger data sets mainly comprising nuclear DNA. We discuss some issues arising when using Bayesian techniques on RNA sequence data.
The PHASE software package allows phylogenetic tree construction with a number of evolutionary models designed specifically for use with RNA sequences that have conserved secondary structure. Evolution in the paired regions of RNAs occurs via compensatory substitutions, hence changes on either side of a pair are correlated. Accounting for this correlation is important for phylogenetic inference because it affects the likelihood calculation. In the present study we use the complete set of tRNA and rRNA sequences from 69 complete mammalian mitochondrial genomes. The likelihood calculation uses two evolutionary models simultaneously for different parts of the sequence: a paired-site model for the paired sites and a single-site model for the unpaired sites. We use Bayesian phylogenetic methods and a Markov chain Monte Carlo algorithm is used to obtain the most probable trees and posterior probabilities of clades. The results are well resolved for almost all the important branches on the mammalian tree. They support the arrangement of mammalian orders within the four supra-ordinal clades that have been identified by studies of much larger data sets mainly comprising nuclear genes. Groups such as the hedgehogs and the murid rodents, which have been problematic in previous studies with mitochondrial proteins, appear in their expected position with the other members of their order. Our choice of genes and evolutionary model appears to be more reliable and less subject to biases caused by variation in base composition than previous studies with mitochondrial genomes.3
BACKGROUND AND PURPOSECancer cells grow without the restraints of feedback control mechanisms, leading to increased cancer cell survival. The treatment of cancer is often complicated by the lack of response to chemotherapy leading to chemoresistance and persistent survival of tumour cells. In this work we studied the role of platelets in chemotherapy-induced cancer cell death and survival. EXPERIMENTAL APPROACHHuman adenocarcinoma cells, colonic (Caco-2) and ovarian (59 M) cells, were incubated with 5-fluorouracil (1-300 mg·mL ) for 1, 24 or 72 h. Following incubation, cancer cells were harvested and cell survival/death was assayed using flow cytometry, Western blotting, real-time PCR, TaqMan® Gene Expression Assays and proteomics. KEY RESULTSHuman platelets increased the survival of colonic and ovarian adenocarcinoma cells treated with two standard anticancer drugs, 5-fluorouracil and paclitaxel. In the presence of platelets, cancer cells up-regulated anti-apoptotic and down-regulated pro-apoptotic genes, increased the number of cells in the synthesis of DNA and decreased the number in the quiescent phase, increased expression of cyclins, DNA repair proteins and MAPKs. The analysis of platelet-Caco-2 secretome demonstrated the release of the chemokine RANTES, thrombospondin-1, TGF-b and clusterin. Finally, human recombinant RANTES and thrombospondin-1 improved survival of Caco-2 cells challenged with paclitaxel. CONCLUSIONS AND IMPLICATIONSThese data demonstrate that platelets increase adenocarcinoma cells survival, proliferation and chemoresistance to standard anticancer drugs. Modulating cancer cell-platelet interactions may offer a new strategy to improve the efficacy of chemotherapy. Abbreviations59 M, human ovarian adenocarcinoma; 5-FU, 5-fluorouracil; Caco-2, human colonic adenocarcinoma; Chk1, checkpoint 1; CRL2014, human gingival fibroblasts; G0/G1, quiescent/interphase G1 phases; G2/M, interphase G2/mitosis phases; PI, propidium iodide; PLT, platelets; PLTR, platelets releasate; PTX, paclitaxel; S, synthesis phase; TCIPA, tumour cell-induced platelet aggregation; TSP-1, thrombospondin-1
Animal mitochondrial genomes usually have two transfer RNAs for leucine: one, with anticodon UAG, translates the four-codon family CUN, while the other, with anticodon UAA, translates the two-codon family UUR. These two genes must differ at the third anticodon position, but in some species the genes differ at many additional sites, indicating that these genes have been independent for a long time. Duplication and deletion of genes in mitochondrial genomes occur frequently during the evolution of the Metazoa. If a tRNA-Leu gene were duplicated and a substitution occurred in the anticodon, this would effectively turn one type of tRNA into the other. The original copy of the second tRNA type might then be lost by a deletion elsewhere in the genome. There are several groups of species in which the two tRNA-Leu genes occur next to one another (or very close) on the genome, which suggests that tandem duplication has occurred. Here we use RNA-specific phylogenetic methods to determine evolutionary trees for both genes. We present evidence that the process of duplication, anticodon mutation, and deletion of tRNA-Leu genes has occurred at least five times during the evolution of the metazoa-once in the common ancestor of all protostomes, once in the common ancestor of echinoderms and hemichordates, once in the hermit crab, and twice independently in mollusks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.