Ultra-multiplexed fluorescence imaging requires the use of spectrally overlapping fluorophores to label proteins and then to unmix the images of the fluorophores. However, doing this remains a challenge, especially in highly heterogeneous specimens, such as the brain, owing to the high degree of variation in the emission spectra of fluorophores in such specimens. Here, we propose PICASSO, which enables more than 15-color imaging of spatially overlapping proteins in a single imaging round without using any reference emission spectra. PICASSO requires an equal number of images and fluorophores, which enables such advanced multiplexed imaging, even with bandpass filter-based microscopy. We show that PICASSO can be used to achieve strong multiplexing capability in diverse applications. By combining PICASSO with cyclic immunofluorescence staining, we achieve 45-color imaging of the mouse brain in three cycles. PICASSO provides a tool for multiplexed imaging with high accessibility and accuracy for a broad range of researchers.
Spatially resolved proteomics requires a highly multiplexed imaging modality. Cyclic imaging techniques, which repeat staining, imaging, and signal erasure, have been adopted for this purpose. However, due to tissue distortion, it is challenging to obtain high fluorescent signal intensities and complete signal erasure in thick tissue with cyclic imaging techniques. Here, we propose an erasureless cyclic imaging method named IMPASTO. In IMPASTO, specimens are iteratively stained and imaged without signal erasure. Then, images from two consecutive rounds are unmixed to retrieve the images of single proteins through self-supervised machine learning without any prior training. Using IMPASTO, we demonstrate 30-plex imaging from brain slices in 10 rounds, and when used in combination with spectral unmixing, in five rounds. We show that IMPASTO causes negligible tissue distortion and demonstrate 3D multiplexed imaging of brain slices. Further, we show that IMPASTO can shorten the signal removal processes of existing cyclic imaging techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.