Introduction: Alzheimer’s disease (AD) is a severe neurodegenerative disease characterized by loss of synaptic connection between neurons of the cortex and subcortical regions. The cholinergic deficit is a consistent and early finding in AD, hence acetylcholinesterase inhibitors (AChEIs) are used for symptomatic improvement of AD. Most of these therapeutic agents are hepatotoxic, leading to liver failure and other complications. Therefore, the study of new AChEIs with less toxic impact and better effectivity is a topical challenge. In view of this, we synthesized novel chemical compounds: TVA and TVS that possess AChEI activity and studied their neuroprotective effect in an experimental AD model. Materials and methods: Studies were performed on white rats. Acute toxicity studies were performed by Karber’s method. AD was induced via bilateral intracerebroventricular administration of Aβ 25–35. Histopathological examinations were performed in the hippocampus and the entorhinal cortex. Liver tissue was additionally examined to monitor the hepatotoxicity of these compounds. Results: Studies of the hippocampus showed that compared to control and TVA-treated groups, under the influence of TVS there were few morphological alterations. Experimental groups showed an increase in the glial cell count, compared to the intact animals. In comparison to the AD group, the increase in microglia was not that prominent under the action of the novel compounds. Under the influence of TVA and TVS, the entorhinal cortex was more susceptible to neuronal injury, although TVS protected pyramidal neurons. Also, the group treated with TVA had signs of acute liver damage, while under the influence of TVS there were no signs of liver changes. Discussion: Histopathological examination showed that the neurodegenerative processes in the hippocampus, as well as in the entorhinal cortex, were significantly reduced under the influence of TVS, compared with the control group. At the same time, TVA had no significant effect on the protection of neuronal cells. Also, TVS was less toxic, and there was no sign of hepatotoxicity during the experiments. Conclusion: These studies demonstrated that TVS possesses neuroprotective activity and reduces neuronal damage induced by Aβ. Graphical abstract:
This work is devoted to the formation doxorubicin (DOX) zinc oxide composites in the form of coating (DOX + ZnO), hydrogels and composite films of DOX with polyvinyl alcohol (DOX + PVA + ZnO) by DC-magnetron deposition of ZnO nanoscale particles (ZnO NPs) on their surfaces (DOX, DOX + PVA) with higher (two times and more) antitumor activity and considerable smaller toxicity at low doses of DOX in compositions compared to the initial drug. Using the methods of spectroscopy, atomic force microscopy (AFM), scanning electron microscopy (SEM) and X-ray Powder Diffraction (XRD), the role of ZnO NPs size on the antitumor activity of doxorubicin zinc oxide compositions is shown. AFM shows presence of many ZnO NPs on the surface DOX. A comparison of the FTIR spectra of DOX and its zinc oxide compositions has shown the presence of new bands of OH valence and deformation vibrations. It is possible to assume that interaction between ZnO and DOX takes place in the form of hydrogen bond, promoting the complexes formation. It is possible that both synergic and hydrogen-bonding ZnO with DOX increase the antitumor activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.