There have been comparatively few investigations reported of radiation effects in zeolites, although it is known that these materials may be modified substantially by exposure to ionizing radiation. Thus, by exposure to γ-rays or high-energy particles, the charge states of atoms may be changed so to create, and accumulate, lattice point defects, and to form structurally disordered regions. Such a technique may permit the creation, in a controlled fashion, of additionally useful properties of the material while preserving its essential stoichiometry and structure. Accordingly, we present an application, in which the cation-exchange capacity of a natural zeolite (clinoptilolite) is substantially enhanced, for the treatment/decontamination of water contaminated with radionuclides e.g. 134Cs, 137Cs and 90Sr, by its exposure to high-energy (8 MeV) electrons, and to different total doses.
The AREAL laser-driven RF gun provides 2-5 MeV energy ultrashort electron pulses for experimental study in life and materials sciences. We report the first experimental results of the AREAL beam application in the study of molecular-genetic effects, silicon-dielectric structures, ferroelectric nanofilms, and single crystals for scintillators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.